

A Concise Introduction to Random Number Generation

Peter Hellekalek

Dept. of Mathematics, University of Salzburg

Overview of This Talk

How to assess RNGs?

- criteria
- a checklist

A note on statistical testing

- strategies
- Maurer's Universal Test and related tests

Interesting RNGs

- AES
- ▶ HAVEG(E)

RNGs: The Goal

What we want ...

A device (hardware or software) whose output is random.

More precisely ...

Want to generate bits (or numbers) that appear like being sampled from a uniform distribution on $\{0,1\}$ (or [0,1]), independently of each other.

RNGs: The Reality

What we get...

Finite output streams that pass many tests of randomness.

Pseudorandom number generator (PRNG)

Deterministic algorithm whose output mimics finite random sequences.

Question

What are random sequences?

Randomness

Quote

"A finite sequence is random if there is no short sequence that describes it fully, in some unambigous mathematical notation."

... A. Kolmogoroff

Quote

"A string is random if it cannot be algorithmically compressed."

... C. Calude

Remark

The basic idea of Kolmogoroff complexity:

Randomness = Incompressibility

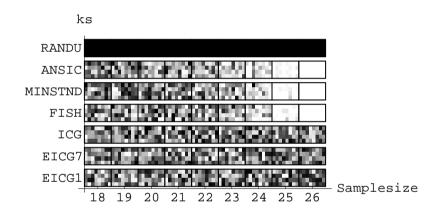
RNGs: Practice

Quote

"Monte Carlo results are misleading when correlations hidden in the random numbers and in the simulated system interfere constructively."

... A. Compagner, Phys. Rev. E **52**(1995)

Quote


"Ironically, pseudorandom numbers often appear to be more random than random numbers obtained from physical sources."

... A. Rukhin et al., NIST Special Publ. 800-22

RNGs: An Illustration

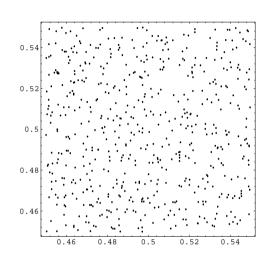
With RNGs, there are no guarantees.

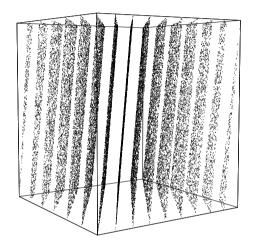
True Value: Irregular Pattern in Every Box

RNGs: LCGs and (E)ICGs

Sample Size: $2^{18}..2^{26}$

Phenomena


Setup


- ▶ RNG: LCG(2³¹, 65539, 0, 1), i.e. RANDU
- ▶ Dimension: d = 2, 3
- Sample size: $N=2^{16}$
- ▶ Plot nonoverlapping pairs (x_{2n}, x_{2n+1}) and triples $(x_{3n}, x_{3n+1}, x_{3n+2})$, $0 \le n < N$.

Phenomena: Increasing the Dimension

We increase the dimension from d=2 to d=3:

Question

How to prevent such unpleasant surprises?

Answer

Theoretical correlation analysis and/or statistical testing.

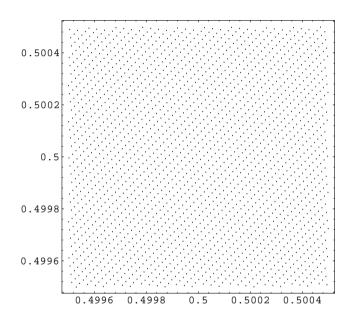
Linear Congruential Generator (LCG)

Parameters

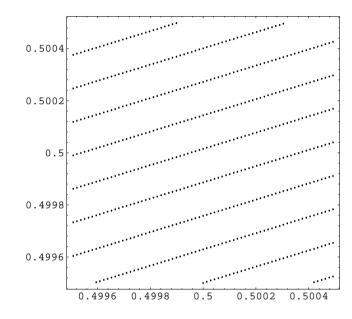
- $\rightarrow m$... modulus
- ▶ a ...multiplier
- ▶ b ...additive constant
- $ightharpoonup y_0$...initial value

Defining congruence

$$y_{n+1} \equiv a \cdot y_n + b \pmod{m}, \quad n \ge 0$$


 \dots LCG (m, a, b, y_0)

Output stream


$$x_n := \frac{y_n}{m} \in [0, 1[, n = 0, 1, \dots]]$$

LCGs: Two Examples

LCG(2³², 69069, 0,1)

Inversive Congruential Generator (ICG)

Parameters

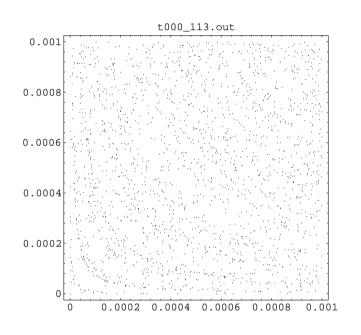
- $\blacktriangleright m$... modulus (usually a big prime)
- ▶ a ... multiplier
- ▶ b ...additive constant
- $ightharpoonup y_0$...initial value

Defining congruence

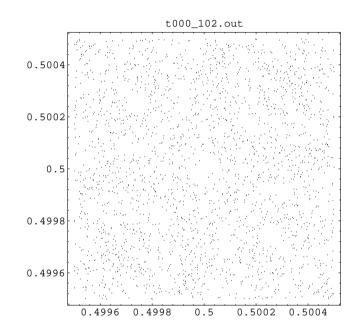
$$y_{n+1} \equiv a \cdot \overline{y_n} + b \pmod{m}, \quad n \ge 0$$

(
$$\overline{c} = c^{-1}$$
 for $c \neq 0$, $\overline{c} = 0$ if $c = 0$.)

 \dots ICG (m, a, b, y_0)


Output stream

$$x_n := \frac{y_n}{m} \in [0, 1[, n = 0, 1, \dots]]$$



ICG: Point Structure

 $ICG(2^{31}-1, 1288490188, 1, 1)$

lower left corner

middle section

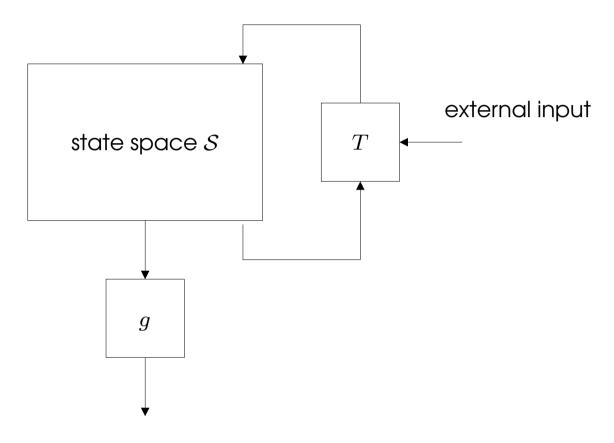
(PRNGs)

Pseudorandom Number Generators

PRNG: A tuple $G = (\mathcal{S}, \mathcal{I}, T, \mathcal{O}, g, s_0)$, where

- \triangleright S is the finite state space,
- $\triangleright \mathcal{I}$ is the input space,
- $T: \mathcal{I} \times \mathcal{S} \to \mathcal{S}$ is the transition function,
- \triangleright O is the finite output space,
- $pagthing g: \mathcal{S} \to \mathcal{O}$ is the output function,
- $ightharpoonup s_0 \in \mathcal{S}$ is the seed.

The next state s_{n+1} is generated by


$$s_{n+1} = T(i_n, s_n), \qquad n \ge 0,$$

the output stream $(o_n)_{n>0}$ is computed by

$$o_n = g(s_n), \qquad n \ge 0.$$

PRNGs: The Structure

The Structure of a PRNG

Classification of RNGs

Types of RNGs

Type of Application		
Simulation	Cryptography (stream ciphers)	
(Monte Carlo)	(stream ciphers)	

Type of Platform	
Hardware	Software
("physical" randomness)	(pseudo-randomness)

Classes of PRNGs

PRNGs: Type of Algorithm		
linear		nonlinear

Which RNG?

RNG vs. Application

RNG \ Application	Simulation	Cryptography
Hardware	not recommended	task dependent
Software	recommended	task dependent

PRNG vs. Application

PRNG \ Application	Simulation	Cryptography
Linear	recommended (if chosen properly)	not recommended (insecure)
Nonlinear	task dependent (too small, too slow)	recommended (if chosen properly)

Checklist: Theoretical Support

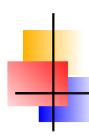
A) Theoretical Support		
Period Length	Conditions	
	Algorithms for parameters	
Structural	Intrinsic structures	
Properties	Equidistribution properties	
	Predictability	
Correlation	For particular parameters	
Analysis	For particular initializations	
	For parts of the period	
	For subsequences	
	For combinations of RNGs	

Checklist: Statistical Testing

B) Statistical Testing	
Variable sample size	
Two- or higher level tests	
Performance with test batteries	
Serial test family	
Return times	
Other test quantities	
Transformation methods: sensitivity	

Checklist: Practical Aspects

C) Practical Aspects	
Tables of parameters available?	
Portable implementations available?	
Parallelization techniques applicable?	
Large samples available?	
Efficiency?	
Cryptography: security aspects?	


RNGs: Simulation vs. Cryptography

Simulation	Cryptography	
Theoretical Analysis		
Period Length		
Known (in most cases)	Unknown (in most cases)	
Structural Properties		
Intrinsic structures welcome	Intrinsic structures are to be avoided	
Statistical Testing		
Extensive results	Lack of published test results	
Batteries of tests	Under development (NIST)	

RNGs: Simulation vs. Cryptography

Simulation	Cryptography	
Practical Aspects		
RNGs trimmed for efficiency	RNGs in many flavors	
Design Aspects		
Prefer linear algorithms (efficiency!)	Require nonlinear algorithms (security!)	

RNGs: Simulation vs. Cryptography

Simulation	Cryptography	
RNG Testing		
fair adversary: RNG treated as a black box	freestyle: all attacks allowed	
test tries to find structures in the output stream	same goal	
not interested in predictability	try to find the secret key	

NIST Test Suite (NTS)

Comments

Question I:

What are the redundancies in this test suite?
For example, NST contains various entropy estimators
(Maurer's Universal Test, Approximate Entropy of Pincus and Singer, Serial Test). What is the relation between them?

Question II Which NIST tests detect which kind of defect? The NTS has not been analyzed with respect to a defective RNG. Which tests will detect a given defect (and which tests will not)?

Testing Statistical Tests

Question

How universal is Maurer's Universal Test?

Approach

• Construct bitstream x_0, x_1, \ldots induce correlations at distance κ :

$$x_0, x_1, x_2, \ldots, x_{\kappa-1}, x_{\kappa-1}, x_{\kappa+1}, \ldots$$

Does the statistical test at hand detect this error?

Results

See our "Defective Source Analysis"

Correlations

Choose order κ , $\kappa \geq 1$

Choose random bits

$$x_0, x_1, \ldots, x_{\kappa-1}$$

Choose bias λ

$$x_i = \begin{cases} x_{i-\kappa} & \text{with probability } \lambda \\ 1 - x_{i-\kappa} & \text{with probability } 1 - \lambda \end{cases}$$

Choose source probability distribution

$$\lambda = 0.5$$
 ...i.i.d. uniform

$$\lambda \neq 0.5$$
 ...i.d. uniform

- \blacktriangleright Test input $x_0, x_1, \ldots, x_{m-1}$ (m bits)
- \blacktriangleright Sample size n>1
- ▶ Dimension $d \ge 1$
- Overlapping and non-overlapping d-tuples

$$\tilde{x}_i^d = (x_i, x_{i+1}, \dots, x_{i+d-1})$$

$$\bar{x}_i^d = (x_{i \cdot d}, x_{i \cdot d+1}, \dots, x_{i \cdot d+d-1})$$

Frequency count

$$\mathbf{a} = (a_1, \dots, a_d) \in \{0, 1\}^d$$

$$\tilde{\pi}_{\mathbf{a}}^d = \frac{1}{n} \# \{0 \le i < n : \tilde{x}_i = \mathbf{a}\}$$

$$(\bar{\pi}_{\mathbf{a}}^d = \frac{1}{n} \# \{0 \le i < n : \bar{x}_i = \mathbf{a}\})$$

Approximate Entropy

$$\hat{H}_f^d = -\sum_{\mathbf{a} \in \mathcal{A}^d} \tilde{\pi}_{\mathbf{a}}^d \log \tilde{\pi}_{\mathbf{a}}^d + \sum_{\mathbf{a} \in \mathcal{A}^{d-1}} \tilde{\pi}_{\mathbf{a}}^{d-1} \log \tilde{\pi}_{\mathbf{a}}^{d-1},$$

$$\hat{I}^d = 2n(1 - \hat{H}_f^d) \xrightarrow{D} \chi_{2^d - 2^{d-1}}^2$$

...(Pincus and Singer, 1998)

Universal Test

$$\hat{H}_r^d = \frac{1}{d \cdot n} \sum_{i=Q}^{Q+n-1} \log T(i)$$

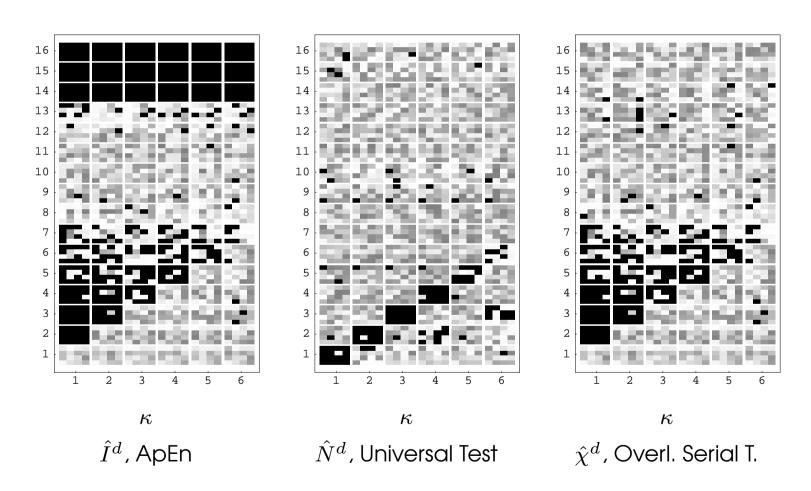
$$\hat{N}^d = \frac{\hat{H}_r^d - E[\cdot]}{\sqrt{V[\cdot]}} \xrightarrow{\mathcal{D}} N[0, 1]$$

... (Maurer, 1992)

(T(i): return time for \bar{x}_i^d)

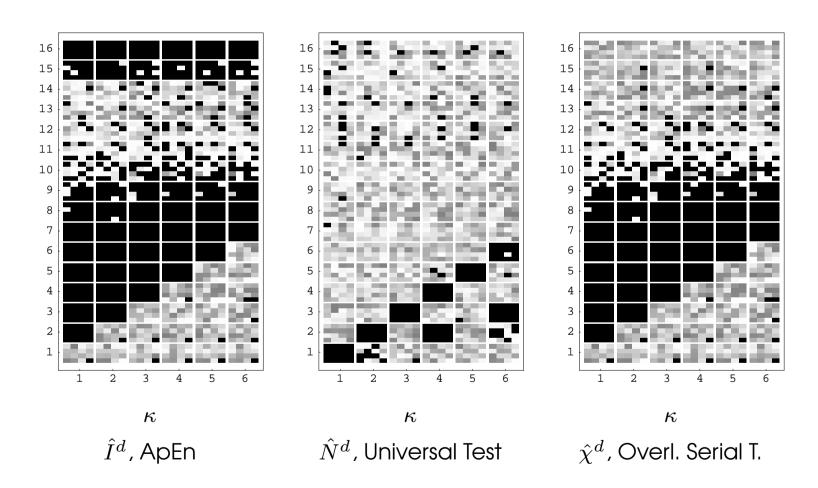
Overlapping Serial Test

$$\hat{\chi}^{d} = n \sum_{\mathbf{a} \in \mathcal{A}^{d}} \frac{(\tilde{\pi}_{\mathbf{a}}^{d} - (1/2)^{d})^{2}}{(1/2)^{d}} - n \sum_{\mathbf{a} \in \mathcal{A}^{d-1}} \frac{(\tilde{\pi}_{\mathbf{a}}^{d-1} - (1/2)^{d-1})^{2}}{(1/2)^{d-1}}$$


...(I.J. Good, 1953)

Test Parameters

Sample size	$n=2^{16},\ 2^{18}$ bits
No. of repetitions	16 indept. samples
Dimension	d = 116
Order	$\kappa = 16$
Bias λ	$\lambda = 0.49$
Entropy of source	$H\approx 0.999711$



Results for $n=2^{16}$ bits Black dots denote p-values smaller than 0.01.

Results for $n=2^{18}$ bits Black dots denote p-values smaller than 0.01.

AES: Modes of Operation

Output Feedback Mode MODE (OFB)

choose k ...key

choose z_0 ...initial value

compute $\left(e_k^{(i)}(z_0)\right)_{i\geq 0}$... output stream

$$\underbrace{e_k^{(i)} = e_k \circ \ldots \circ e_k}_{i \text{ times}}$$

PRNG Mode

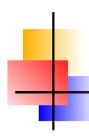
extract k ...key

choose z_0 ... initial value

compute $\left(e_k^{(i)}(z_0)\right)_{i\geq 0}$... output stream

COUNTER MODE

choose k ...key


compute x_0, x_1, \dots (counter) ...plaintext

compute $(e_k(x_i))_{i\geq 0}$... output stream

AES: Setups

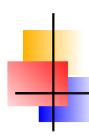
```
Setup 1 - PRNG
  k, z_0
                                    ... various cases (all-zero, random, ...)
  \left(e_k^{(i)}(z_0)\right)_{i>0}
                                    ... output stream
Setup 2 – DIFF
  k
                                    ... various cases (all-zero, random, ...)
 (p_i)_{i\geq 0}
                                    ... highly patterned plaintext blocks
  (e_k(p_i))_{i>0}
                                    ... output stream
Setup 3 – PCOUNT
                                    ... various cases (all-zero, random, ...)
  k
 (p_i)_{i\geq 0}
                                    ...increasing counter
  (e_k(p_i))_{i>0}
                                    ... output stream
Setup 4 – KCOUNT
                                    ... plaintext block
 p_0
  (k_i)_{i\geq 0}
                                    ...incrementing counter
  (e_{k_i}(p_0))_{i>0}
                                    ... output stream
```


AES: Test I

Setup

- $lackbox{ consider output bit stream } (y_i)_{i\geq 0} \text{ of AES}$
- \blacktriangleright cut out every 8th bit, i.e. take y_0, y_8, \ldots ; this yields the bit stream

$$(x_i)_{i>0}$$
 $(x_i = y_{8i}, i \ge 0)$


 \blacktriangleright for each combination of dimension d and sample size n, compute

$$\hat{\chi}_1^d(n), \ \hat{\chi}_2^d(n), \ \dots, \ \hat{\chi}_{16}^d(n)$$

Goodness-of-fit test (KS-Test)

Test Parameters

Sample size	$n=2^{18},2^{19},\dots,2^{28}$ bits
No. of repetitions	16 indept. samples
Dimension	d = 1, 2, 4, 8, 16

AES: Test II

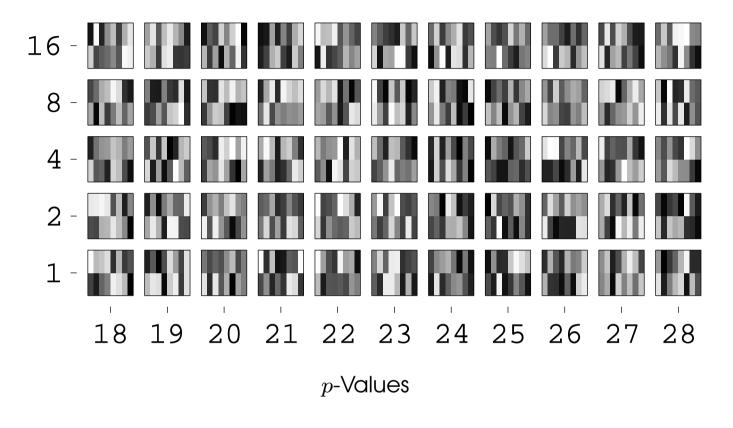
Setup

- lacktriangle consider output bit stream $(y_i)_{i>0}$ of AES
- produce d-dimensional overlapping d-tuples

$$\tilde{y}_i^d = (y_i, y_{i+1}, \dots, y_{i+d-1})$$

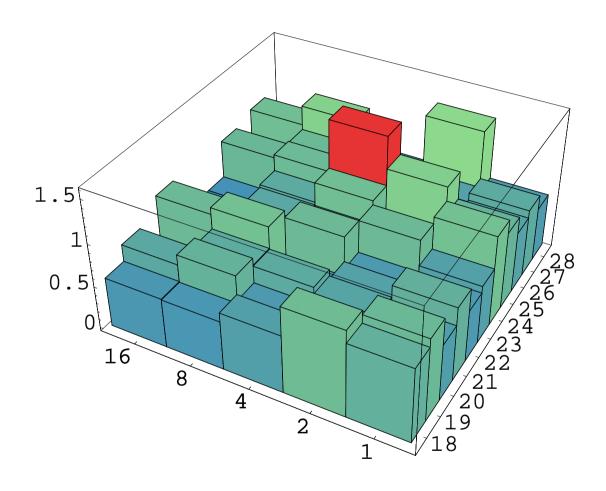
- \blacktriangleright (Dimension reduction) map each d-tuple to one of the three states -1, 0, 1
- \blacktriangleright for each combination of the dimension d and the sample size n, compute

$$\hat{\chi}_1^d(n), \ \hat{\chi}_2^d(n), \ \dots, \ \hat{\chi}_{16}^d(n)$$

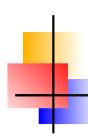

Goodness-of-fit test (KS-Test)

Test Parameters

Sample size	$n=2^{22},2^{23},\dots,2^{28}$ bits
No. of repetitions	16 indept. samples
Dimension	d = 32, 64, 128, 256



AES: Results of Test I



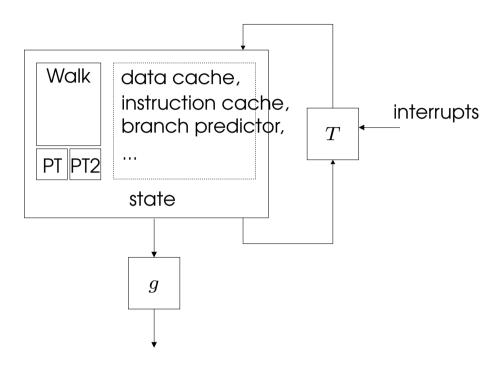
AES: Results of Test I

KS-Test Values

HAVEG and HAVEGE

HArdware Volatile Entropy Gathering and Expansion Sendrier and Seznec (INRIA, 2002)

- Uses processor interrupts to gather entropy
- HAVEG is a passive entropy harvester
- ► HAVEGE is active, acts on the processor


The idea behind

Each attempt to read the inner state of the processor alters it at the same time.

Complete state of HAVEGE cannot be observed without freezing the clock of the processor.

Structure of HAVEGE

The General Structure of HAVEGE

RNGs: State of the Art

Present Situation

Like in the race between cryptographers and cryptanalysts, presently the designers of RNGs are winning against the designers of statistical tests.

The intrinsic structures of modern RNGs, in particular of good cryptographic RNGs, are too complicated to be detected by current statistical tests.

Future developments

New ideas for testing are needed. This will take some time.