Attacks On And With API:
PIN Recovery Attacks

Masaryk University in Brno
Faculty of Informatics

Jan Krhovjak
Daniel Cvréek

Roadmap

o Introduction
Basic terminology
Insufficient checking of function parameters

o Decimalisation table attacks
Techniques of PIN generation and verification
Attacks utilising known PINs
Extended attack without known PINs

o ANSI X9.8 attacks
PIN-block formats
Attacking PAN with translation&verification functions
Attacking PIN translation functions
Collision attack
o Conclusion

Introduction

o Basic terminology
Hardware Security Module (HSM)
o Example: IBM 4758 (depicted below)
Host device
Application Programming Interface (API)
Attack
o PIN Recovery Attacks
Clear PIN-block (CPB)
Encrypted PIN-block (EPB)
Personal Account Number (PAN)
o Insufficient checking of function parameters

PIN Generation and Verification

o Techniques of PIN generation and verification
IBM 3624 and IBM 3624 Offset
o Based on validation data (e.g. account no. — PAN)
o Validation data encrypted with PIN derivation key
o The result truncated, decimalised => PIN

o IBM 3624 Offset — decimalised result called IPIN
(Intermediate PIN)
o Customer selects PIN,
Offset = PIN - IPIN (digits mod 10)
Verification process is the same

o result is compared with decrypted EPB (encrypted
PIN from cash-machine)

PIN Verification Function PIN Verification — IBM 3624 Offset

o Simplified example of verification function and o Inputs - (4-digit PIN)
its parameters: PIN in EPB is 7216 (delivered by ATM)
1. PIN (CPB) encryption/decryption key PUb!'C offseF (typically on card) - 4344
2. PIN derivation key - for PIN generation process Decimalisation table — 0123 4567 8901 2789
3. PIN-block format Personal Account Number (PAN) is
4. validation data - for PIN extraction from EPB (e.g. PAN) 4556 2385 7753 2239
5. encrypted PIN-block o Verification process
6. verification method o PAN is encrypted => 3F7C 2201 00CA 8AB3
7. data array - contains decimalisation table, validation -
data and offset o Truncated to four digits => 3F7C
o Clear PIN is not allowed to be a parameter of o Decimalised according to the table => 3972
verification function! o Added offset 4344, generated PIN => 7216

o Decrypt EPB and compare with the correct PIN

Decimalisation Table Attacks | Decimalisation Table Attacks Il

o Attacks utilising known PINs o Results
Assume four-digit PINs and offset 0000

If decim. table (DT) is 0000 0000 0000 0000
generated PIN is always 0000

All PIN digits are discovered
PIN space reduced from 104 to 36 (worst case)

PIN generation function with zero DT outputs EPB o Extended attack without known PINs

with PIN 0000 Assume, that we obtain customers EPB with
correct PIN

Let D,y = 0123 4567 8901 2345 is original DT D; are DTs containing i—1 on positions, where D,

D, is a zero DT with “1” where D, has i hasie.g. D;= 0123 4467 8901 2344

e.g. D= 0000 0100 0000 0001 Verification function is called with intercepted EPB

The attacker calls 10x verification function with EPB and D;

of 0000 PIN and with D, to Dy Position of PIN digits is discovered by using offset

If i is not in PIN, the “1” will not be used and with digits incremented individually by “1”
verification against 0000 will be successful o Bold “4” changes to “5”

DT Attacks — Example

o Let PIN in EPB be 1492, offset is 1234
o We want to find position of “2”

o Verification function with D, results in
14911 =1492 => fails

o Offsets 2234, 1334, 1244, 1235 increment
resulting generated PIN (2491, 1591, ..)

o Eventually the verification is successful with the
last offset => 2 is the last digit

o To determine four-digit PIN with different digits
is needed at most 6 calls of verification function

Clear PIN Blocks

o Code Book Attacks and PIN-block formats
=> clear PIN blocks (CPB)

p — PIN digit
r — random digit

o ECI-2 format for 4 digits PINs X_ali:)itr:aryl
- all the same

ECI -2 CPB = pppprrrrrrrrrrrr F _ OxF digit

o Visa-3 format for 4-12 digits PINs
Visa-3 CPB = ppppFXXXXXXXXXXX

o ANSI X9.8 format for 4—12 digits PINs
P, = Zl ppppf fffffffFF

P, = ZZZZaaaaaaaaaaaa Z — 0x0 digit
— | — PIN length

ANSI X9.8 CPB = P, xor P, f— either “p” of “F*
a — PAN digit

ANSI X9.8 Attacks |

o Attacking PAN with translation & verification
functions - input parameters (key K, EPB, PAN)
Functions decrypt EPB & extract PIN
CPB xor P, = 04ppppFFFFFFFFFF => PIN = pppp
Extraction tests PIN digits to be 0-9!
If a digit of PAN is modified by x
o Py’ = P, xor 0000x00000000000
o CPB xor P, =04ppppFFFFFFFFFF xor

xor 0000x00000000000
it means that PIN = pppp xor 00x0

o If p xor x < 10 function ends successfully,
otherwise function fails

ANSI X9.8 Attacks Il

The sequence of (un)successful function calls can
be used by attacker to identify p as a digit from
set{p, p xor 1}

For example if PIN digit is 8 or 9, then this
sequence will be PPFFFFFFPPPPPPPP, where P is
PASS, F is FAIL and x is incremented from 0 to 15

o Only last two PIN digits can be attacked
o PIN space is reduced from 10* to 400
o This attack can be extended to all PIN digits

ANSI X9.8 Attacks IlI

o Attack against PIN translation functions
Input/output PIN-block format can be modified
Consider ANSI X9.8 EPB with null PAN (wlog)

o Attacker specifies input format as VISA-3 and output
as ANSI X9.8
o PIN is then extracted from 04ppppFFFFFFFFFF as
04pppp
o 04pppp is formatted into ANSI CPB as
0604ppppFFFFFFFF and encrypted
Attacker has EPB with six-digit PIN and can use
previous attack to determine all 4 digits of original
PIN

o PIN space is reduced from 10 to 16

ANSI X9.8 Attacks IV

PIN can be also determined exactly
The attacker needs to be able to modify PAN
o This is impossible if input format is Visa-3
o PAN modification must be done earlier (in EPB)
Let’s modify second digit of PAN by x
o Input format is VISA-3 and output ANSI X9.8

o PIN is decrypted from ANSI X9.8 EPB and extracted
as 04pppp xor 00000x

oIfx = p xor F(i.e.x xor p = F)then PIN is
extracted as 04ppp and formatted into ANSI X9.8

o This can be detected by/during translation back to
VISA-3 format EPB

ANSI X9.8 Attacks — Collision Attack

o Assuming well designed API (e.g. DT is fixed)
o ﬁttack allows to partially identify last two PIN
igits
Basic idea (simple example with one-digit PIN&PAN)

PAN PIN xor EPB PAN PIN xor EPB
0 0 0 21A0 7 0 7 2F2C
0 1 1 7302 7 1 6 345A
0 2 2 536A 7 2 5 0321
0 3 3 FA2A 7 3 4 FF3A
0 4 4 FF3A 7 4 3 FA2A
0 5 5 0321 7 5 2 536A
0 6 6 345A 7 6 1 73D2
0 7 7 2F2C 7 7 0 21A0
0 8 8 4D0D 7 8 F ACA2
0 9 9 21cC 7 9 E 9A91

Attacker knows for each PAN only the set of EPBs

15

ANSI X9.8 Attacks — Collision Attack

o Looking collisions in output of PIN generation
function
o Remember PIN generation & ANSI X9.8 CPB
o Formalizing PIN generation function
So EPB = Encrypt (Pad(U,, U, U, U,)), where
U= (F,(e,f)+a) nod 10
U= (Fy(e, f)+b) mod 10
U=((F.(e, f)+c) nod 10) xor e
U;=((F4(e, f)+d) nod 10) xor f
e, f are first two digits of PAN
F.(e, f) is respective digit of IPIN
a, b, c, d are digits of offset

ANSI X9.8 Attacks — Collision Attack

The whole function is Gen(a, b, c, d, e, f)
Desired IPIN digits are F (e, f) and Fy(e, f)
o To get F (e, f), the attacker must choose a fixed
value DELTA
o She modifies offset and to get collisions:
Gen(a,b,c,d e, f) = Gen(a’,b",c',d ,e xor DELTA f)
o When a collision is found: U;=U,. and DELTA =
((Fc(e, f)+c) nmod 10) xor ((F.(e xor DELTA, f)+c) nod 10)
o Certain DELTA can be obtained only by a few
combinations (e.g F=6 xor 9 or 7 xor 8)
=>(F,(e,f)+c) nod 10 is6,7,80r9
o Next collision for DELTA=7 leaves only 6 and 7
o Because c is known, we simply get F (e, f)

Conclusion

The security of current generation banking APIs is
really bad with respect to insider attacks

Function parameters can be arbitrarily changed -
controls not sufficient

PIN-block formats do not ensure sufficient entropy

Number of standards implemented ensures
interoperatibility but also causes errors

Can astmetric cryptography help? See an attack on
Chrysalis Luna CA3 module!

http: //www. fi . muni . cz/ ~xkr hovj / api nf/sdi pr/ DP_upr avena v1. pdf

http://ww.cl.cam ac. uk/ ~nkb23/research. htm

http://wwv cl.cam ac. uk/ ~j c407/

