
1

Attacks On And With API:
PIN Recovery Attacks

Masaryk University in Brno
Faculty of Informatics

Jan Krhovják
Daniel Cvrček

2

Roadmap

Introduction
Basic terminology
Insufficient checking of function parameters

Decimalisation table attacks
Techniques of PIN generation and verification
Attacks utilising known PINs
Extended attack without known PINs

ANSI X9.8 attacks
PIN-block formats
Attacking PAN with translation&verification functions
Attacking PIN translation functions
Collision attack

Conclusion

3

Basic terminology
Hardware Security Module (HSM)

Example: IBM 4758 (depicted below)

Host device
Application Programming Interface (API)
Attack

PIN Recovery Attacks

Clear PIN-block (CPB)
Encrypted PIN-block (EPB)
Personal Account Number (PAN)

Insufficient checking of function parameters

Introduction

4

PIN Generation and Verification

Techniques of PIN generation and verification
IBM 3624 and IBM 3624 Offset

Based on validation data (e.g. account no. – PAN)
Validation data encrypted with PIN derivation key
The result truncated, decimalised => PIN

IBM 3624 Offset – decimalised result called IPIN
(Intermediate PIN)
Customer selects PIN,

Offset = PIN – IPIN (digits mod 10)

Verification process is the same
result is compared with decrypted EPB (encrypted
PIN from cash-machine)

2

5

PIN Verification Function

Simplified example of verification function and
its parameters:

1. PIN (CPB) encryption/decryption key
2. PIN derivation key – for PIN generation process
3. PIN-block format
4. validation data – for PIN extraction from EPB (e.g. PAN)
5. encrypted PIN-block
6. verification method
7. data array – contains decimalisation table, validation

data and offset

Clear PIN is not allowed to be a parameter of
verification function!

6

Inputs – (4-digit PIN)
PIN in EPB is 7216 (delivered by ATM)
Public offset (typically on card) – 4344

Decimalisation table – 0123 4567 8901 2789

Personal Account Number (PAN) is
4556 2385 7753 2239

Verification process
PAN is encrypted => 3F7C 2201 00CA 8AB3

Truncated to four digits => 3F7C
Decimalised according to the table => 3972
Added offset 4344, generated PIN => 7216

Decrypt EPB and compare with the correct PIN

PIN Verification – IBM 3624 Offset

7

Attacks utilising known PINs
Assume four-digit PINs and offset 0000
If decim. table (DT) is 0000 0000 0000 0000

generated PIN is always 0000
PIN generation function with zero DT outputs EPB
with PIN 0000

Let Dorig = 0123 4567 8901 2345 is original DT
Di is a zero DT with “1” where Dorig has i
e.g. D5 = 0000 0100 0000 0001
The attacker calls 10x verification function with EPB
of 0000 PIN and with D0 to D9

If i is not in PIN, the “1” will not be used and
verification against 0000 will be successful

Decimalisation Table Attacks I

8

Results
All PIN digits are discovered
PIN space reduced from 104 to 36 (worst case)

Extended attack without known PINs
Assume, that we obtain customers EPB with
correct PIN

Di are DTs containing i –1 on positions, where Dorig
has i e.g. D5 = 0123 4467 8901 2344
Verification function is called with intercepted EPB
and Di

Position of PIN digits is discovered by using offset
with digits incremented individually by “1”

Bold “4” changes to “5”

Decimalisation Table Attacks II

3

9

Let PIN in EPB be 1492, offset is 1234
We want to find position of “2”

Verification function with D2 results in
1491!=1492 => fails
Offsets 2234, 1334, 1244, 1235 increment
resulting generated PIN (2491,1591,…)

Eventually the verification is successful with the
last offset => 2 is the last digit

To determine four-digit PIN with different digits
is needed at most 6 calls of verification function

DT Attacks – Example

10

Clear PIN Blocks

Code Book Attacks and PIN-block formats
=> clear PIN blocks (CPB)

ECI-2 format for 4 digits PINs
ECI-2 CPB = pppprrrrrrrrrrrr

Visa-3 format for 4–12 digits PINs
Visa-3 CPB = ppppFxxxxxxxxxxx

ANSI X9.8 format for 4–12 digits PINs
P1 = ZlppppffffffffFF
P2 = ZZZZaaaaaaaaaaaa
ANSI X9.8 CPB = P1 xor P2

Z – 0x0 digit
l – PIN length
f – either “p” of “F”
a – PAN digit

p – PIN digit
r – random digit
x – arbitrary,

all the same
F – 0xF digit

11

ANSI X9.8 Attacks I

Attacking PAN with translation & verification
functions – input parameters (key K, EPB, PAN)

Functions decrypt EPB & extract PIN
CPB xor P2 = 04ppppFFFFFFFFFF => PIN = pppp
Extraction tests PIN digits to be 0–9!
If a digit of PAN is modified by x

P2’ = P2 xor 0000x00000000000
CPB xor P2’=04ppppFFFFFFFFFF xor

xor 0000x00000000000
it means that PIN = pppp xor 00x0

If p xor x < 10 function ends successfully,

otherwise function fails

12

ANSI X9.8 Attacks II

The sequence of (un)successful function calls can
be used by attacker to identify p as a digit from
set {p, p xor 1}
For example if PIN digit is 8 or 9, then this
sequence will be PPFFFFFFPPPPPPPP, where P is
PASS, F is FAIL and x is incremented from 0 to 15

Only last two PIN digits can be attacked
PIN space is reduced from 104 to 400

This attack can be extended to all PIN digits

4

13

ANSI X9.8 Attacks III

Attack against PIN translation functions
Input/output PIN-block format can be modified
Consider ANSI X9.8 EPB with null PAN (wlog)

Attacker specifies input format as VISA-3 and output
as ANSI X9.8
PIN is then extracted from 04ppppFFFFFFFFFF as
04pppp

04pppp is formatted into ANSI CPB as
0604ppppFFFFFFFF and encrypted

Attacker has EPB with six-digit PIN and can use
previous attack to determine all 4 digits of original
PIN

PIN space is reduced from 104 to 16

14

ANSI X9.8 Attacks IV

PIN can be also determined exactly
The attacker needs to be able to modify PAN

This is impossible if input format is Visa-3
PAN modification must be done earlier (in EPB)

Let’s modify second digit of PAN by x
Input format is VISA-3 and output ANSI X9.8
PIN is decrypted from ANSI X9.8 EPB and extracted
as 04pppp xor 00000x
If x = p xor F (i.e. x xor p = F) then PIN is
extracted as 04ppp and formatted into ANSI X9.8

This can be detected by/during translation back to
VISA-3 format EPB

15

Assuming well designed API (e.g. DT is fixed)
Attack allows to partially identify last two PIN
digits

Basic idea (simple example with one-digit PIN&PAN)
PAN PIN xor EPB PAN PIN xor EPB
0 0 0 21A0 7 0 7 2F2C
0 1 1 73D2 7 1 6 345A
0 2 2 536A 7 2 5 0321
0 3 3 FA2A 7 3 4 FF3A
0 4 4 FF3A 7 4 3 FA2A
0 5 5 0321 7 5 2 536A
0 6 6 345A 7 6 1 73D2
0 7 7 2F2C 7 7 0 21A0
0 8 8 4D0D 7 8 F AC42
0 9 9 21CC 7 9 E 9A91

Attacker knows for each PAN only the set of EPBs

ANSI X9.8 Attacks – Collision Attack

16

ANSI X9.8 Attacks – Collision Attack

Looking collisions in output of PIN generation
function
Remember PIN generation & ANSI X9.8 CPB
Formalizing PIN generation function

So EPB = Encrypt(Pad(Ua,Ub,Uc,Ud)), where
Ua= (Fa(e,f)+a) mod 10

Ub= (Fb(e,f)+b) mod 10

Uc=((Fc(e,f)+c) mod 10) xor e

Ud=((Fd(e,f)+d) mod 10) xor f

e, f are first two digits of PAN
Fx(e,f) is respective digit of IPIN
a,b,c,d are digits of offset

5

17

ANSI X9.8 Attacks – Collision Attack

The whole function is Gen(a,b,c,d,e,f)
Desired IPIN digits are Fc(e,f) and Fd(e,f)

To get Fc(e,f), the attacker must choose a fixed
value DELTA

She modifies offset and to get collisions:
Gen(a,b,c,d,e,f) = Gen(a’,b’,c’,d’,e xor DELTA,f)

When a collision is found: Uc=Uc’ and DELTA =
((Fc(e,f)+c) mod 10)xor((Fc(e xor DELTA,f)+c) mod 10)

Certain DELTA can be obtained only by a few
combinations (e.g F=6 xor 9 or 7 xor 8)

=>(Fc(e,f)+c) mod 10 is 6, 7, 8 or 9
Next collision for DELTA=7 leaves only 6 and 7
Because c is known, we simply get Fc(e,f)

18

Conclusion

The security of current generation banking APIs is
really bad with respect to insider attacks
Function parameters can be arbitrarily changed –
controls not sufficient
PIN-block formats do not ensure sufficient entropy
Number of standards implemented ensures
interoperatibility but also causes errors

Can asymmetric cryptography help? See an attack on
Chrysalis Luna CA3 module!

Other attacks ☺
Master’s thesis (in czech):
http://www.fi.muni.cz/~xkrhovj/apinf/sdipr/DP_upravena_v1.pdf
Mike Bond’s research:
http://www.cl.cam.ac.uk/~mkb23/research.html
Jolyon Clulow’s research:
http://www.cl.cam.ac.uk/~jc407/

