
1

Attacks On And With API:
PIN Recovery Attacks

Masaryk University in Brno
Faculty of Informatics

Jan Krhovják
Daniel Cvrček

2

Roadmap

{ Introduction
z Basic terminology
z Insufficient checking of function parameters

{ Decimalisation table attacks
z Techniques of PIN generation and verification
z Attacks utilising known PINs
z Extended attack without known PINs

{ ANSI X9.8 attacks
z PIN-block formats
z Attacking PAN with translation&verification functions
z Attacking PIN translation functions
z Collision attack

{ Conclusion

3

{ Basic terminology
z Hardware Security Module (HSM)

{ Example: IBM 4758 (depicted below)

z Host device
z Application Programming Interface (API)
z Attack

{ PIN Recovery Attacks

z Clear PIN-block (CPB)
z Encrypted PIN-block (EPB)
z Personal Account Number (PAN)

{ Insufficient checking of function parameters

Introduction

4

PIN Generation and Verification

{ Techniques of PIN generation and verification
z IBM 3624 and IBM 3624 Offset

{ Based on validation data (e.g. account no. – PAN)
{ Validation data encrypted with PIN derivation key
{ The result truncated, decimalised => PIN

{ IBM 3624 Offset – decimalised result called IPIN
(Intermediate PIN)

{ Customer selects PIN,
Offset = PIN – IPIN (digits mod 10)

z Verification process is the same
{ result is compared with decrypted EPB (encrypted

PIN from cash-machine)

2

5

PIN Verification Function

{ Simplified example of verification function and
its parameters:

1. PIN (CPB) encryption/decryption key
2. PIN derivation key – for PIN generation process
3. PIN-block format
4. validation data – for PIN extraction from EPB (e.g. PAN)
5. encrypted PIN-block
6. verification method
7. data array – contains decimalisation table, validation

data and offset

{ Clear PIN is not allowed to be a parameter of
verification function!

6

{ Inputs – (4-digit PIN)
z PIN in EPB is 7216 (delivered by ATM)
z Public offset (typically on card) – 4344

z Decimalisation table – 0123 4567 8901 2789

z Personal Account Number (PAN) is
4556 2385 7753 2239

{ Verification process
{ PAN is encrypted => 3F7C 2201 00CA 8AB3

{ Truncated to four digits => 3F7C
{ Decimalised according to the table => 3972
{ Added offset 4344, generated PIN => 7216

{ Decrypt EPB and compare with the correct PIN

PIN Verification – IBM 3624 Offset

7

{ Attacks utilising known PINs
z Assume four-digit PINs and offset 0000
z If decim. table (DT) is 0000 0000 0000 0000

generated PIN is always 0000
z PIN generation function with zero DT outputs EPB

with PIN 0000

z Let Dorig = 0123 4567 8901 2345 is original DT
z Di is a zero DT with “1” where Dorig has i

e.g. D5 = 0000 0100 0000 0001
z The attacker calls 10x verification function with EPB

of 0000 PIN and with D0 to D9

z If i is not in PIN, the “1” will not be used and
verification against 0000 will be successful

Decimalisation Table Attacks I

8

{ Results
z All PIN digits are discovered
z PIN space reduced from 104 to 36 (worst case)

{ Extended attack without known PINs
z Assume, that we obtain customers EPB with

correct PIN

z Di are DTs containing i –1 on positions, where Dorig
has i e.g. D5 = 0123 4467 8901 2344

z Verification function is called with intercepted EPB
and Di

z Position of PIN digits is discovered by using offset
with digits incremented individually by “1”
{ Bold “4” changes to “5”

Decimalisation Table Attacks II

3

9

{ Let PIN in EPB be 1492, offset is 1234
{ We want to find position of “2”

{ Verification function with D2 results in
1491!=1492 => fails

{ Offsets 2234, 1334, 1244, 1235 increment
resulting generated PIN (2491,1591,…)

{ Eventually the verification is successful with the
last offset => 2 is the last digit

{ To determine four-digit PIN with different digits
is needed at most 6 calls of verification function

DT Attacks – Example

10

Clear PIN Blocks

{ Code Book Attacks and PIN-block formats
z => clear PIN blocks (CPB)

{ ECI-2 format for 4 digits PINs
z ECI-2 CPB = pppprrrrrrrrrrrr

{ Visa-3 format for 4–12 digits PINs
z Visa-3 CPB = ppppFxxxxxxxxxxx

{ ANSI X9.8 format for 4–12 digits PINs
z P1 = ZlppppffffffffFF
z P2 = ZZZZaaaaaaaaaaaa
z ANSI X9.8 CPB = P1 xor P2

Z – 0x0 digit
l – PIN length
f – either “p” of “F”
a – PAN digit

p – PIN digit
r – random digit
x – arbitrary,

all the same
F – 0xF digit

11

ANSI X9.8 Attacks I

{ Attacking PAN with translation & verification
functions – input parameters (key K, EPB, PAN)
z Functions decrypt EPB & extract PIN
CPB xor P2 = 04ppppFFFFFFFFFF => PIN = pppp

z Extraction tests PIN digits to be 0–9!
z If a digit of PAN is modified by x

{ P2’ = P2 xor 0000x00000000000
{ CPB xor P2’=04ppppFFFFFFFFFF xor

xor 0000x00000000000
it means that PIN = pppp xor 00x0

{ If p xor x < 10 function ends successfully,

otherwise function fails

12

ANSI X9.8 Attacks II

z The sequence of (un)successful function calls can
be used by attacker to identify p as a digit from
set {p, p xor 1}

z For example if PIN digit is 8 or 9, then this
sequence will be PPFFFFFFPPPPPPPP, where P is
PASS, F is FAIL and x is incremented from 0 to 15

{ Only last two PIN digits can be attacked
{ PIN space is reduced from 104 to 400

{ This attack can be extended to all PIN digits

4

13

ANSI X9.8 Attacks III

{ Attack against PIN translation functions
z Input/output PIN-block format can be modified
z Consider ANSI X9.8 EPB with null PAN (wlog)

{ Attacker specifies input format as VISA-3 and output
as ANSI X9.8

{ PIN is then extracted from 04ppppFFFFFFFFFF as
04pppp

{ 04pppp is formatted into ANSI CPB as
0604ppppFFFFFFFF and encrypted

z Attacker has EPB with six-digit PIN and can use
previous attack to determine all 4 digits of original
PIN

{ PIN space is reduced from 104 to 16

14

ANSI X9.8 Attacks IV

z PIN can be also determined exactly
z The attacker needs to be able to modify PAN

{ This is impossible if input format is Visa-3
{ PAN modification must be done earlier (in EPB)

z Let’s modify second digit of PAN by x
{ Input format is VISA-3 and output ANSI X9.8
{ PIN is decrypted from ANSI X9.8 EPB and extracted

as 04pppp xor 00000x
{ If x = p xor F (i.e. x xor p = F) then PIN is

extracted as 04ppp and formatted into ANSI X9.8

{ This can be detected by/during translation back to
VISA-3 format EPB

15

{ Assuming well designed API (e.g. DT is fixed)
{ Attack allows to partially identify last two PIN

digits
z Basic idea (simple example with one-digit PIN&PAN)

PAN PIN xor EPB PAN PIN xor EPB
0 0 0 21A0 7 0 7 2F2C
0 1 1 73D2 7 1 6 345A
0 2 2 536A 7 2 5 0321
0 3 3 FA2A 7 3 4 FF3A
0 4 4 FF3A 7 4 3 FA2A
0 5 5 0321 7 5 2 536A
0 6 6 345A 7 6 1 73D2
0 7 7 2F2C 7 7 0 21A0
0 8 8 4D0D 7 8 F AC42
0 9 9 21CC 7 9 E 9A91

z Attacker knows for each PAN only the set of EPBs

ANSI X9.8 Attacks – Collision Attack

16

ANSI X9.8 Attacks – Collision Attack

{ Looking collisions in output of PIN generation
function

{ Remember PIN generation & ANSI X9.8 CPB
{ Formalizing PIN generation function

z So EPB = Encrypt(Pad(Ua,Ub,Uc,Ud)), where
Ua= (Fa(e,f)+a) mod 10

Ub= (Fb(e,f)+b) mod 10

Uc=((Fc(e,f)+c) mod 10) xor e

Ud=((Fd(e,f)+d) mod 10) xor f

z e, f are first two digits of PAN
z Fx(e,f) is respective digit of IPIN
z a,b,c,d are digits of offset

5

17

ANSI X9.8 Attacks – Collision Attack

z The whole function is Gen(a,b,c,d,e,f)
z Desired IPIN digits are Fc(e,f) and Fd(e,f)

{ To get Fc(e,f), the attacker must choose a fixed
value DELTA

{ She modifies offset and to get collisions:
Gen(a,b,c,d,e,f) = Gen(a’,b’,c’,d’,e xor DELTA,f)

{ When a collision is found: Uc=Uc’ and DELTA =
((Fc(e,f)+c) mod 10)xor((Fc(e xor DELTA,f)+c) mod 10)

{ Certain DELTA can be obtained only by a few
combinations (e.g F=6 xor 9 or 7 xor 8)

=>(Fc(e,f)+c) mod 10 is 6, 7, 8 or 9
{ Next collision for DELTA=7 leaves only 6 and 7
{ Because c is known, we simply get Fc(e,f)

18

Conclusion

{ The security of current generation banking APIs is
really bad with respect to insider attacks

{ Function parameters can be arbitrarily changed –
controls not sufficient

{ PIN-block formats do not ensure sufficient entropy
{ Number of standards implemented ensures

interoperatibility but also causes errors

{ Can asymmetric cryptography help? See an attack on
Chrysalis Luna CA3 module!

{ Other attacks ☺
z Master’s thesis (in czech):

http://www.fi.muni.cz/~xkrhovj/apinf/sdipr/DP_upravena_v1.pdf
z Mike Bond’s research:

http://www.cl.cam.ac.uk/~mkb23/research.html
z Jolyon Clulow’s research:

http://www.cl.cam.ac.uk/~jc407/

