
1

Verifying Web Services Security

Karthikeyan Bhargavan

Joint work with C. Fournet & A.D. Gordon
with contributions from R. Pucella and R. Corin

MSR Cambridge Samoa Project
http://securing.ws

Securing Web Services?
Web Services are a new way of building distributed systems

XML/SOAP messages sent over HTTP/SMTP
+ Multi-party workflow + Service Discovery + Policy Exchange + Security

Web Services are the next big thing for distributed messaging
At least Microsoft, IBM, Sun, W3C, … think so
Toolkits available now: Microsoft WSE, Sun WSTK, IBM, Verisign
Lack of security assurances is biggest roadblock (Gartner, 2003)
New specifications are being designed for securing web services
Security is notoriously hard, XML or no XML

Meanwhile in research-land…
Sustained and successful effort to develop formalisms and tools to
check crypto protocols

Needham-Schroeder threat model: attacker can capture, replay, redirect,
rewrite messages, but cannot guess secrets or break crypto
Hot Research Topic: approx 30 papers per year

Timely opportunity to develop tools for validating standards-based
XML crypto protocols

MSR Cambridge Samoa Project

Verify strong security properties for web services deployments
Theorems on Secrecy, Integrity, Authentication
Published papers in POPL’03, FMCO’03, CCS’04, SWS’04

Give a formal model for new protocol specifications
Suggested improvements

Validate our model against sample configurations distributed with WSE (MB)
Found numerous attacks, helped fix them, took part in security reviews
Proved samples correct

Develop automated analysis tools
Release TulaFale, PolicyAdvisor

This talk:
TulaFale: our language for specifying web services security protocols
Policy Analyzer: automatically verify system configurations relying on web services
Policy Generator: generate secure-by-default security configurations
Policy Advisor: suggest best practices to developers for their security policies

Talk Outline

1. Intro to Web Services Security and Threats
2. Discussion of protocol vulnerabilities
3. TulaFale: Verifying protocols

Tool for protocol designers, researchers, spec authors

4. Policy Analyzer: Verifying system configs
5. Policy Generator: Generating secure configs

Tools for web services developers, administrators

6. Policy Advisor: Suggesting best practices
Tool for end users, security non-experts

7. Conclusions and Ongoing work

2

Part I: Web Services &
Security

Web Sites vs. Web Services

1. Browse to Bank’s Web Site
2. Enter Username/Password
3. Download Statement
4. Import into MS Money

Every evening:
• MS Money queries

Bank’s Web Service with
Username/Password

• Bank sends statement

Travel Agency

The Future of E-Commerce?

MS Passport

Airline

Hotel
Client

Credit Card

Firewall

Firewall
Proxy

Amazon, eBay, Mappoint, …

Security Threats
Applications available over open web

Traditional web application attacks
Input Validation
Denial of Service

New concerns: flexible, XML-based protocols
Web services developers can design and deploy
their own security protocols

Not just a fixed protocol like SSL
Can combine standard protocols in new ways

XML message format open to rewriting attacks
Much like classic active attacks (Needham-Schroeder ’78)
Opponent can Redirect, Replay, Modify, Impersonate
New: flexible, semi-structured message formats

structure of received message triggers processing

3

Simple RPC Protocol

Client App Web Service

User U
Service S

If Msg1 and Msg2 are in the clear, the opponent can
• Read U’s request and response
• Change Msg1 to (U,T,id1,req) to redirect message to different service T
• Change Msg2 to (S,id1,id2,resp’) to fool U about her response
• …

Msg1(U,S,id1,req)

Msg2(S,id1,id2,resp)

Opponent

Available Security Mechanisms

Series of emerging specifications for
message crypto (WS-Security)

Digital signatures, Encryption of message parts

security token exchange (WS-Trust)

secure sessions (WS-SecureConversation)

security policies (WS-SecurityPolicy)

… and others, from Microsoft, IBM, Verisign, …

Clients and servers can secure exchanges
using protocols defined in these specs

deploying security policy files that choose,
combine, and configure protocols

Simple Secure RPC Protocol

U’s pwd
S’s cert

Client App

Security
Layer

U’s pwd
S’s key

Web Service

Security
Layer

User U Service S

Security Goals:
1. S knows request came from U
2. U knows response came from S
3. U knows response was for its request
4. Request and response are secret

Msg2(S,id1,id2,resp)Msg2(S,id1,id2,Encpwd(resp),
Signcert(id1,id2,resp)

Msg1(U,S,id1,req)
Msg1(U,S,id1,Enccert(req),

Signpwd(S,id1,req))

<Envelope>
<Header>

<To Id=2> S </>
<MessageId Id=3> id1 </>
<Security>

<UsernameToken Id=4>
<Username> U </>
<Nonce>n</>
<Created>t</>

<Signature>
<SignedInfo>

<Reference URI= #1><DigestValue>sha1(req)</>
<Reference URI= #2><DigestValue>sha1(S)</>
<Reference URI= #3><DigestValue>sha1(id1)</>

<SignatureValue>hmac-p-sha1(pwd,<SigInfo>…</>)</>
<KeyInfo>

<SecurityTokenReference><Reference URI=#4/>
<Body Id=1>
<EncryptedData>

<KeyInfo>
<KeyName>CN=subj(cert)</>

<CipherData>
<CipherValue>rsa(key(cert), req)</>

Class I:
Classic Rewriting AttacksClass II:

XML-specific Rewriting Attacks

Multiple Clients and Servers

V’s pwd
S’s cert

Client App

Security
Layer

User V

U’s pwd
W’s cert
T’s key

Web Service

Security
Layer

Service T

U’s pwd
S’s cert

Client App

Security
Layer

User U

W’s cert
T’s cert

Client App

Security
Layer

User W

T’s Policy

V’s Policy

W’s Policy

U’s Policy

U’s pwd
V’s pwd’
S’s key

Web Service

Security
Layer

Service S

S’s Policy

Class III: Configuration Attacks
Are all links secure?
• with parallel sessions?
• of different protocols?
• with keys shared between servers?
• with bad clients, bad servers?

4

Summary: Threat Model
The attacker

Controls the network
Chooses an arbitrary network topology
Sees all messages
Controls message routing and delivery

Controls several (bad) clients, services, token providers
Knows all public keys for good principals

Can initiate any number of sessions, message exchanges
Can open and modify messages

using known XML formats and previously obtained keys

But, the attacker cannot
Act as Root CA for X.509 certificates
Guess secrets such as passwords or keys
Break cryptographic algorithms

Goal: Message authentication, correlation, and confidentiality
for compliant (good) clients, services, token providers

Part II: Protocol Vulnerabilities

Client(U) Service(S)

Msg1(U,S,id1,req)

Msg2(S,U,id1,id2,resp)

begin C1 (U,S,id1,req)

end C1 (U,S,id1,req)

begin C2 (U,S,id1,req,id2,resp)

end C2 (U,S,id1,req,id2,resp)

An intended run of the sample protocol

Security Goals:
1. Request Authentication: Client and Service agree on C1
2. Response Authentication and

Request-Response Correlation: Client and Service agree on C2
3. Secrecy: Attacker cannot compute req and resp from messages

Client(U) Service(S)

begin C1 (U,S,id1,b1)

end C1 (V,S,id1,b1’)

begin C2 (V,S,id1,b1’,id2,b2)

end C2 (U,S,id1,b1,id2,b2)

Opponent (V)

Delete

Decrypt,
Re-encrypt,

Forward

Attack I
• Opponent breaks correlation by forwarding his response to U
• Class I: Classic M-i-M protocol attack
• Possible Fixes: Sign U in Msg2, or Encrypt id1 in Msg1

New
Request

Msg1(U,S,id1,Enccert(req),
SignpwdU(S,id1,req))

Msg1(V,S,id1,Enccert(req’),
SignpwdV(S,id1,req’))

Msg2(S,id1,id2,EncpwdV(resp),
Signcert(id1,id2,resp)Msg2(S,id1,id2, EncpwdU(resp),

Signcert(id1,id2,resp)

5

Client(U) Service(S)

begin C1 (U,S,id1,b1)

end C1 (V,S,id1,b1’)

begin C2 (V,S,id1,b1’,id2,b2)

Opponent (V)

Copy,
Re-sign

I know response b2 to b1!

Attack II
• Opponent breaks response secrecy by re-signing U’s request
• Class II: XML-specific rewriting attack
• Fix: Encrypt signature in Msg1

Msg1(U,S,id1,Enccert(req),
SignpwdU(S,id1,req)) Msg1(V,S,id1,Enccert(req),

SignpwdV(S,id1,req))

Msg2(S,id1,id2,EncpwdV(resp),
Signcert(id1,id2,resp)

<Envelope>
<Header>

<To Id=2>S</>
<MessageId Id=3>id1</>
<Security>

<UsernameToken Id=4>
<Username>U</>
<Nonce>n</>
<Created>t</>

<Signature>
<SignedInfo>

<Reference URI= #1><DigestValue>sha1(req)</>
<Reference URI= #2><DigestValue>sha1(S)</>
<Reference URI= #3><DigestValue>sha1(id1)</>

<SignatureValue>hmac-p-sha1(pwdU,<SigInfo>…</>)</>
<KeyInfo>

<SecurityTokenReference><Reference URI=#4/>
<Body Id=1>
<EncryptedData>

<KeyInfo>
<KeyName>CN=subj(cert)</>

<CipherData>

<CipherValue>rsa(key(cert),req)</>

U’s pwd
V’s pwd’

cert
key

Multiple services with same signing key

Regular
Web Service

T
Security
Layer

U’s pwd
cert

Client App

Security
Layer

User U
Premium

Web Service
S

Security
Layer

Web Server

V’s pwd
cert

Client App

Security
Layer

User V

Msg2(S,id1,id2,resp)

Msg1(U,S,id1,req)

Msg2(T,id1’,id2’,resp’)

Msg1’(V,T,id1’,req’)

Msg1’(V,T,id1,Ecert(req),
Sigpwd(req))

Weak Protocol between V & T: Only req signed in Msg1’!
Security Goal: protocol between U & S must still be secure

Client(U) Service(T)

Msg1(U,S,id1,b1)

begin C1 (U,S,id1,b1)

end C1’ (b1)

begin C2’ (U,T,id1,b1,id2,b2)

Opponent

Capture,
Replace Msg1’(U,T,id1,b1)

Msg2(T,U,id1,id2,b2)

end C2 (U,S,id1,b1,id2,b2)

Attack III
• Opponent fools U into accepting regular response for premium
request
• Class III: Configuration-specific attack
• Fix: Sign S in Msg2 & Msg2’, Don’t share keys

Summary

Found dozens of security flaws
WSE 1.0, 2.0 modified

Participated in security reviews

Some specs have been changed
Best practices paper in the works
Transfer of analysis tools in progress

http://securing.ws

6

Part III: TulaFale – Verifying Protocols

TulaFale

Finding bugs is useful, but…
we would like to give positive guarantees!
TulaFale: New language for specifying

XML-based security protocols
More abstract than C# code

focused only on security aspects
Small, formal language

good target for analysis tools
Based on pi calculus

easy to express, understand powerful attacker models
can use analysis tools such as Blanchet’s ProVerif

Growing library of web service security protocols
easy to program new protocols, compose existing ones

The Pi-Calculus and Cryptography

Milner, Parrow, Walker (1989); Milner (1999)

The spi-calculus (Abadi and Gordon 1999) adds Dolev-Yao style
representation of cryptographic operations and protocols

Various proof techniques developed, including resolution-based
prover ProVerif (Blanchet 2001), for reasoning about systems
P | O where P is the explicit system and O is an arbitrary,
unknown, active attacker

The pi-calculus is a tiny yet highly
expressive concurrent language,
with precise semantics, rich
theory, and several
implementations

Analyzing Protocols using TulaFale

OK, or
No because…

WSE 1.0 Samples

What TulaFale does

CLR
(IL)

SOAP
processing

WSE
Blanchet’s
ProVerif
analyzer

TulaFale
C# code

TulaFale
script

predicate
library

intermediate pi-calculus

TulaFale = pi + XML + predicates + assertions

Hand-wrote library modeling WSE
and scripts modeling code-based

WSE samples

7

Modeling Protocols in TulaFale

Protocol = principals + messages + processing + security goals
TulaFale = pi + XML + predicates + assertions
Messages modeled by XML terms with cryptography

terms in a many-sorted algebra with sorts for strings, XML
elements, bytestrings, lists
include constructors/destructors modeling cryptography

Message processing modeled by predicates
horn clauses over XML terms with message equalities

Compliant (good) principals modeled by pi processes
Non-compliant or compromised (bad) principals modeled by
unspecified environment

“attacker can do anything, using the secrets it knows”
Security goals modeled by assertions on events executed by
good principals

Specifying Secure RPC Protocol

Msg1(U,S,id1,req)U’s pwd
S’s cert

Client App

Security
Layer

U’s pwd
V’s pwd’
S’s key

Web Service

Security
Layer

Msg2(S,id1,id2,resp)

User U Service S

Specifying Protocols:

Message Processing as Predicates

predicate isMsg1(msg1:item,U:item,pwd:string,S:item,skS:bytes,
id1:string,req:item) :-

msg1 =
<Envelope>
<Header>
<To>S</>
<MessageId>id1</>
<Security>
utok
sig1</></>

<Body>b1</></>,
isEncryptedData(b1,req,skS),
isUserTokenKey(utok,U,pwd,skU),
isSignature(sig1,"hmacsha1",skU,

[<Body>req</> <To>S</> MessageId>id1</>]).

Parse
XML

Message

Decrypt
Message

Body (req)

Compute
pwd-based

key

Check
Signature

Uses library predicates for:
1. message parsing,
2. encryption, decryption
3. signatures,
4. tokens, key computation
covering WS-Security, …

Specifying Protocols:
Clients, Services as Pi Processes

Msg1(U,S,id1,req)U’s pwd
S’s cert

Client App

Security
Layer

U’s pwd
V’s pwd’
S’s key

Web Service

Security
Layer

Msg2(S,id1,id2,resp)

User U Service S

8

process Client(U:string,pwd:string,pkR:bytes) =
in init (S,certS,req,n,t);
new id1:string;

begin C1 (U,S,id1,req);
filter mkMsg1(msg1,U,pwd,n,t,S,certS,id1,req) -> msg1;
out soap(msg1);

in soap(msg2);
filter isMsg2(msg2,S,certS,id1,id2,resp) -> id2,resp;
end C2 (U,S,id1,req,id2,resp).

Specifying Protocols:
Clients, Services as Pi Processes

Message Exchange

process Service(S:string,certS:bytes,skS:bytes) =
in soap(msg1);
in anyUser(U,pwd);
filter isMsg1(msg1,U,pwd,S,skS,id1,req) -> id1,req;
end C1 (U,S,id1,req);

in accept (id2,resp);
filter mkMsg2(msg2,S,certS,skS,id1,id2,resp) -> msg2;
begin C2 (U,S,id1,req,id2,resp);
out soap(msg2).

Call predicate to
construct Msg1
(send policy)

Call predicate to
check Msg2

(receive policy)

Automated Proofs
Security Goals written as Queries for ProVerif

Request Authentication
For all honest U, S: whenever a Service(S,..) invokes end C1 (U,S,id1,req),
some Client(U,..) must have invoked begin C1 (U,S,id1,req).

Response Authentication & Request-Response Correlation
Secrecy of req and resp

For sample protocol
Request-Response Correlation, Response Secrecy does not hold
Proverif finds attacks I and II

Theorem: All runs of (fixed) script preserve authentication,
correlation and secrecy

for any number of client-service sessions and
for an attacker that can send, read, modify, replay any message
for any number of other clients, services in parallel

Typical script size: 200 lines + library
Analysis time: few seconds to few minutes

TulaFale Demo

U’s pwd
S’s cert

Client App

Security
Layer

U’s pwd
S’s key

Web Service

Security
Layer

User U Service S

Based on WSE 2.0 Samples:
U signs using shared pwd
S signs using X.509 cert

Multi-Party Protocols

WS-Security provides basic mechanisms to secure
SOAP traffic, one message at a time

Signing and encryption keys derived from long-lived secrets
like passwords or private keys

If a SOAP interaction consists of multiple, related
messages, WS-Security alone may be inefficient,
and does not secure session integrity

Standard idea: establish short-lived session key

Recent specs describe this idea at the SOAP-level
WS-SecureConversation defines security contexts, used to
secure sessions between two parties
WS-Trust defines how security contexts are issued and
obtained

9

Multi-Party Protocols:
WS-Trust & WS-SecureConversation

Client

STS

Service

1. RST

2. RSTR

3. “Session Exchanges”

SCs
SCT

…

SC

Trust

Secure
Conv

STS = Security Token Server

RST = Request Security Token

RSTR = RST Response

SC = Security Context

SCT = SC Token

Discussion
First formal analysis of WS-Trust and WS-
SecureConversation

XML syntax and automation very effective, against a
demanding, realistic attacker model
Approx 1000 LOC - manual proofs we published at POPL’04
concerning one or two message protocols would not scale
Still, a theorem concerning open-ended sessions proved by
combination of automated proof and short hand-proof

As is common, these specs:
focus on message formats for interoperability
are non-committal regarding security, for example, no clear
spec of contents of SCs

By making modes, data, and goals explicit, we
found design and implementation bugs

see our paper at ACM SWS workshop for a discussion

Status and Ongoing work

Models for several protocol standards
Covering most WSE 1.0, 2.0 samples

Username-passwords, X.509, SCT sessions, SAML
Some interop scenarios

Library predicates for important specs
WS-Security, WS-Trust, WS-SecureConversation

Published papers on case studies
TulaFale 0.1 available for download

With library and models included
http://securing.ws

Part IV: Policy Analyzer –
Verifying Configurations

10

Web Service Security Policies

Clients, services have XML files describing
security policy

Located in same IIS virtual directory
Describe protocols to use for different services
Simple declarative description of deployed
protocols

No need to look at messy C#
We analyze policy files collected from client and servers

Easy to get them wrong
Most policies in WSE 2.0 were insecure
Combination of policies may have unexpected effects

<Policy Id=“Msg1">
<All>

<Confidentiality>
<TokenInfo>

<SecurityToken>
<TokenType>X509v3</>
<Claims><SubjectName>S</></>

<MessageParts>Body()</>
<Integrity>

<TokenInfo>
<SecurityToken>

<TokenType>UsernameToken</>
<Claims><SubjectName>U</></>

<MessageParts>Body() Header("To")
Header("MessageId”)</>

Tools: Policy Generator/Analyzer

OK, or
No because…

Static
warnings

WSE 2.0 samples

What our tools do

CLR
(IL)

SOAP
processing

ProVerif
(pi calculus)

TulaFale

code
C#/VB

TulaFale script
S(C(L),L)

predicate
library

Analyzer S(-,-)
Generator C(-)

policy config
C(L)

spec L of
secure links

WSE 2.0

Automatically consume and
generate WSE policy configs

Analyzing Policy Configurations

U’s pwd
V’s pwd’

cert
key

Regular
Web Service

T
Security

Layer

U’s pwd
cert

Client App

Security
Layer

User U
Premium

Web Service
S

Security
Layer

Web Server

V’s pwd
cert

Client App

Security
Layer

User V

Policy3.xml
Policy4.xml

Policy1.xml Policy2.xml

Automated tools for collecting, parsing policies from IIS Servers, Clients
Config = [Policy1, Policy2, Policy3, Policy4]

Translating Policies to Predicates
<Policy Id=“Msg1">

<All>
<Confidentiality>

<TokenInfo>
<SecurityToken>

<TokenType>X509v3</>
<Claims><SubjectName>S</></>

<MessageParts>Body()</>
<Integrity>

<TokenInfo>
<SecurityToken>

<TokenType>UsernameToken</>
<Claims><SubjectName>U</></>

<MessageParts>Body() Header("To")
Header("MessageId“)</>

predicate hasMsg1Policy(msg1:item,U:item,pwd:string,
S:item,skS:bytes,
id1:string,req:item) :-

msg1 =
<Envelope>

<Header>
<To>S</>
<MessageId>id1</>
<Security>

utok
sig1</></>

<Body>b1</></>,
isEncryptedData(b1,req,skS),
isUserTokenKey(utok,U,pwd,skU),
isSignature(sig1,"hmacsha1",skU,

[<Body>b1</> <To>S</> MessageId>id1</>]).

Conjunction

Encryption Requirement

Signature Requirement

11

Link Specifications:
Formalizing Desired Topology

Link: Security spec for a single web service
Spec = [Link1, Link2]
Link1 =

{ServiceURI = “http://server/servicePremium”,
ClientPrins = [U],
ServicePrin = S,
SecrecyLevel = Encrypted}

Link2 =
{ServiceURI = “http://server/serviceRegular”,
ClientPrins = [U, V],
ServicePrin = S,
SecrecyLevel = Clear}

Links translate to security goals in TulaFale
All requests and responses on Link1 and Link2 must be secure

Web Location
of Service

Allowed Users

Service Cert
Subject Name

Request/Response
Secrecy

Secrecy not required

Proofs

Policy Analyzer S(-,-) translates policies and links to
TulaFale scripts
For sample Config & Spec, assertions for both links
fail

Proverif finds Attack III
If services use different certs, then Link1 is secure

but Link2 is not
If both services use strong policies, then both links are
secure

Similar results for other sample configurations
Sample policy: 69 lines,
Link spec: 14 lines,
Generated script: 283 lines (+library)
Analysis time: several minutes to several hours

Part V: Policy Generator:
Secure-by-Default Configurations

Generating Secure Policies

Policy generator C(-) translates links to secure-by-default policy configs
Makes specific choices on what to sign, encrypt
Specializes policy for desired links

Generated policies can be directly deployed in WSE clients, servers

Recommended policy stronger than defaults
In request, sign

<Body>, (Integrity)
<To>, <Action>, (Avoid Redirection)
<MessageId>, <Timestamp> (Avoid Replay)

In response, sign
<Body>, (Integrity)
<From>, <RelatesTo>, (Correlation)

<RequestingUser>?
<MessageId>, <TimeStamp> (Avoid Replay)

If encrypted link,
Encrypt <Body> in both request and response

12

Generated Policies are Secure

Theorem: All policy configurations generated from link
specs satisfy our security goals

For all link specifications L, S(C(L),L) provides request &
response authentication, correlation, and secrecy for links in L

Hence, generated configs can be safely deployed

Proof:
Strong property: there are an unlimited number of link specs
Use combination of automated proofs and manual reasoning
Hint 1: There are only 4 kinds of link generated policies
Hint 2: Prove that the config with all links enabled is secure

Service unaffected by Client Policies

Theorem: If a service uses a link-generated policy,
then irrespective of the client policies, the resulting
configuration preserves request authentication and
response secrecy
Hence, naïve clients cannot break service security

Proof:
Again, combination of automated proofs and manual
reasoning
Hint: Even the weakest send policy preserves secrecy of

passwords, signing keys

Policy Generator/Analyzer Demo

U’s key
S’s cert

Client App

Security
Layer

U’s cert
S’s key

Web Service

Security
Layer

User U
(CN=WSEQuickStartClient)

Service S
(CN=WSEQuickStartServer)

xpol-wse.xml xpol-wse.xml

xlink.xml

WSE 2.0 X.509 Signing Sample

Part VI: Policy Advisor –
Suggesting Best Practices

13

How Do Policies Fail?
Policy-based security is a Good Thing compared to
code-based security, but no panacea
During security reviews of sample policies, we found
several common errors

Replay attacks – failure to sign message ID and timestamp
Redirection attacks – failure to sign the <To> or <Action> headers
Dictionary attacks – unencrypted passwords, even if hashed
Man-in-the-middle attacks – failure to bind initiator identity to
response messages

Unlikely to be fixed once for all in a standard, since
policies explicitly intended to be customisable
Security-savvy developers could use Policy Analyzer
to verify policy configs
Need for a light-weight tool to quickly advise on
best practices

Policy Advisor
Loads a WSE2 policy config, runs queries, generates
a report (errors, warnings, assurances)
Offers only relative guarantees, but aims to help
understanding of policies, and to catch typical
errors

TulaFale part of testing process, but not part of tool

Suggests best practices for policy configs

Status: queries for password disclosure and replay,
redirection, and dictionary attacks

Still quite rudimentary
Public release soon…

Part VII: Conclusions

Related Work
Going in the opposite direction to our policy
analyzer, several tools compile formal models to
code:

Strand spaces: Perrig, Song, Phan (2001), Lukell et al (2003)
CAPSL: Muller and Millen (2001)
Spi calculus: Lashari (2002), Pozza, Sista, Durante (2004)
Apparently, the resulting code cannot yet interoperate with other
implementations – an important future target

Other Dolev-Yao modelling of web services
Type-based analysis of pre-WS-Security web services using
Cryptyc: Gordon and Pucella (2002)
Model-checking of some example WS-Security specs using FDR,
uncovering similar attacks: Kleiner & Roscoe (2004)

Other formalizations of XML and web services specs
XPath, XSLT, XQuery: Wadler et al (since 1999)
WS-AT: Johnson, Langworthy, Lamport, Vogt (2004)

14

Summary & Conclusions
The first automated analysis of security for a deployed system based on
crypto protocols

Our tools find attacks, verify samples, generate secure policies
Analysis tools to be transferred to developers

Web services security specs enable a lot of flexibility
Message formats, composable protocols, configurations
Makes guaranteeing security difficult!

Specs and implementations are only just emerging
Notoriously difficult to get right
Attacks and proofs are subtle, need tool support

Important to verify configurations
Proving protocols secure is not enough

Good place to develop formal tools, get positive results
Standard message formats
Wide applicability

Ongoing and Future Work

Many new protocols
Moving from WSE to Indigo
And new specifications: WS-Security over TLS

Release tools
TulaFale for protocol analyses
Lightweight “best practices” advisor

Extend link specifications and results
Token servers, Firewalls,
Multi-party exchanges,
Authorization

Questions?

http://securing.ws

