
Practical cryptography - the key size problem:
PGP after years

Lenka Fibíková
IEM University Essen

Essen, Germany
fibikova@exp-math.uni-essen.de

Jozef Vyskoč
VaF, s.r.o.

Bratislava, Slovakia
jozef@vaf.sk

30th November 2001

1 Introduction
The size of cryptographic keys belongs to aspects that are quite easily dealt with in the-
ory but that have to be carefully weighted in the practical cryptography. Particularly,
current as well as predicted advances in technology must be taken into account as these
dictate lower bounds for the key size to ensure reasonable security even with respect to
specialized machines. On the other hand too large key size, while secure in theory, brings
some implementation problems especially if speed and available storage are important or
limited.

The key size problem has also some relation to a purely practical problem, namely
replacing a cryptosystem whose security level is no more satisfying. Particularly, if a
cryptosystem still provides enough strength with respect to known analytical attacks, but
advances in technology begin to make brute-force type of attacks possible, some steps
need to be done to retain proper level of security. Quite obvious solution, i.e. to simply
replace the old cryptosystem by another one is not always the best or even possible one as
to devise a good cryptographic algorithm and especially to provide sufficient arguments
on its security usually needs considerable time. But from the practical point of view even
actual replacement of all installments of the old cryptosystem by new ones with minimal
interruption of operations of related applications itself represents challenging problem
especially in the case of cryptosystems that are of widespread use (e.g. are formal or de-
facto standards). Considerably better solution seems to be the one where cryptographic
algorithm used offers necessary flexibility with respect to the key size, i.e. the essential
architecture of the algorithm remains the same even if the size of its key may be increased.

2 Asymmetric cryptographic algorithms
Asymmetric cryptographic algorithms provide necessary flexibility with respect to vary-
ing key sizes. On the other hand they require mathematical operations with arguments
whose size directly depends on the key size, thus with the increasing key size they exhibit
considerable slowdown of operations. This is especially important for applications where
the speed and storage are limiting factors (e.g. smart cards).

There are three classes of asymmetric cryptographic algorithms which are nowadays
commonly used or expected to be viable. Each of them is based on a specific mathematical
problem, which is believed to be infeasible. These three mathematical problems are:

1

2 ASYMMETRIC CRYPTOGRAPHIC ALGORITHMS 2

1. integer factorization problem — IFP (e.g. RSA)

2. discrete logarithm problem — DLP (e.g. ElGamal, DSA)

3. elliptic curve discrete logarithm problem — ECDLP (e.g. EC ElGamal, ECDSA)

Brief description of these algorithms is given in the appendix.

2.1 Security considerations
The key size problem has two aspects — theoretical and practical ones. Here we provide
brief overview of known results using both theoretical and practical approaches that give
us recommended lower bounds for the size of cryptographic keys. Interested reader may
find more details in an excellent paper written by Lenstra and Verheul [11].

2.1.1 Theoretical Security

Strength of every cryptographic algorithm relies on the best methods that are known to
solve the mathematical problem, the algorithm is based upon. For all three problems,
there are special-purpose algorithms that solve the problem quickly for certain special
instances. However, these cases are easy to identify, therefore it is possible to avoid them
in an implementation, and we will not consider them.

Security of all the systems lies on one or more their parameters. It means that security
level of the system increases by increasing the size of this parameter(s). The primary
security parameter of RSA is the modulus N . The DLP has two primary security param-
eters — order of the underlying group and order of its subgroup — primes p and q. The
primary security parameter of ECDLP is the order n of an generator of an additive group
of elliptic curve points.

For the ECDLP, the best known general-purpose attack is the Pollard-ρ algorithm,
whose running time is fully exponential, i.e.

T [n] = O(
√

n). (1)

Thus, to solve an ECDLP instance for an elliptic curve having a 2k-bit parameter n takes
about the same time as the exhaustive search through all k-bit keys of a symmetric cryp-
tosystem (assuming that there is no better attack on the symmetric cryptosystem then the
exhaustive search).

Pollard-ρ algorithm is also the basis for the best known general-purpose attack on the
subgroup DLP. Therefore, the size of q in the DLP systems should have about the same
size as the order n in ECDLP to get the same level of security. [10]

The best known general-purpose attack on the IFP (i.e. on N) as well as on the discrete
logarithm problem (i.e. on p) are based on the General Number Field Sieve Method which
runs in sub-exponential time, i.e.

T [x] = O(exp((c + o(1)) · ln 1

3 x · ln 2

3 ln x)), (2)

where c = (64

9
)

1

3 ≈ 1.923, x equals to N for the IFP and p for the DLP, and the o(1)
term goes to zero as x goes to infinity [12]. This means that, to obtain the same level of
security, it has to hold

|p| = |N |, |q| = |n|, |n| = 2k, (3)

and

|n| = 2(c + o(1)) · ln−
2

3 2 · |N |
1

3 · ln 2

3 (|N | ln 2) (4)

2 ASYMMETRIC CRYPTOGRAPHIC ALGORITHMS 3

where |·| is the length of a parameter in bits, and k is key size of a symmetric cryptosys-
tem.1

The following table compares the equivalent security level for some commonly con-
sidered key sizes [10]:

symmetric schemes RSA DLP ECC
(keysize in bits) (n in bits) (p in bits) (q in bits) (n in bits)

56 512 512 112 112
80 1024 1024 160 160
112 2048 2048 224 224
128 3072 3072 256 256
192 7680 7680 384 384
256 15360 15360 512 512

2.1.2 Practical Security

To discuss practical security of cryptographic algorithms one has to be very careful as
there are too many fuzzy factors (e.g. opponent’s budget, time, workforce, skills, etc.);
moreover technological advances make it a rather moving target. We favor an approach
by Lenstra and Verheul [11] which provides the following estimates.

In 1977 the Data Encryption Standard (DES) was introduced as standard for protection
of sensitive unclassified data. It was stipulated to be reviewed every five years, thus we
can assume that it provided adequate security for commercial use in 1982.

Hypothesis 1 [11] 56 bit keys were believed to provide adequate security in year 1982.

A rough estimate of increasing computing power over time can be obtained by ap-
plying an empirical rule, called Moore’s Law, which states that the computing power
available for a given cost doubles every 18 months.

Hypothesis 2 [11] Every 18 months the amount of computing power and random access
memory one gets for a given cost doubles.

This means that to obtain the same level of security over time, symmetric keys has to be
about 7 bits longer every ten years. More precisely, taking into account the Hypothesis 1,
in year y symmetric keys should be 2(y - 1982)/3 bits longer then in 1982.

Besides the increasing computing power we have to consider also how budgets may
change over time. The US Gross National Product shows a trend of doubling every ten
years [11], thus we can assume that also budgets of attackers have similar progress.

Hypothesis 3 [11] The budgets for breaking cryptographic keys doubles every 10 years.

This means that we need to add one bit to the key size every 10 years. More precisely,
taking into account the Hypothesis 1 in year y, the key size should increase (y−1982)/10
bits concerning the increasing budgets as compared to the year 1982.

It is not possible to estimate what cryptanalytic development will take place in follow-
ing years. However, regarding trends in cryptanalysis from year 1970 it is reasonable to
assume that cryptographic findings will not have dramatic impact on the current state of
cryptography.

1Note that parameter p in 3 is the primary security parameter of the DLP, and differs from parameters p

mentioned in appendix for the other two classes.

2 ASYMMETRIC CRYPTOGRAPHIC ALGORITHMS 4

Hypothesis 4 [11] For all systems we assume that no substantial cryptanalytic develop-
ment will take place.

Note that [11] introduces more sophisticated method to get the adequate security level
over time, however, their results show that the key size we present here may be decreased
and the difference in key size between ECC and the other two classes of cryptosystems is
even bigger (favoring ECC).

Summarizing the key size increase according to the Hypothesis 1–4, the key size pro-
viding adequate security in year y is

56 +
2(y − 1982)

3
+

y − 1982

10
=

23

30
y − 1463533

and consequently the key sizes presented in the previous subsection may be considered as
secure until the following years:

symmetric key size 56 80 112 128 192 256
year 1982 2013 2055 2075 2159 2242

Note that by combining these estimates with the table at the end of subsection 2.1.1, one
can derive respective estimates for asymmetric algorithms.

In order to avoid an attack, an important question is how difficult it is to derive the
result after running the attack only partially. Consider a partial attack which executes
only an 1

x
fraction of the full attack on a system. In case of the exhaustive search, the

probability that an attacker finds the key after running only 1

x
of the full attack is 1

x
. The

General Number Field Sieve Method for both the IFP and DLP is effective only if it runs
to completion; there is no chance to obtain the result sooner. Thus the probability to get
the result after running only 1

x
of the full attack is zero. There is the Elliptic Curve Method

which is asymptotically worse then General Number Field Sieve Method method, but it
produces a nonzero probability in an partial attack. However, the probability of getting
the result by this attack may be considered to be negligible. The success probability of
Pollard-ρ method (for ECDLP and SDLP) is proportional to the square of the fraction of
the work performed, i.e. the probability to obtain the result after running only 1

x
of the

full attack is 1

x2 . This implies that on average incomplete attacks cannot be expected to
pay off. [11]

2.1.3 Forward Secrecy

If an adversary reveals the current encryption key, he can read all messages encrypted by
this key. This problem is usually solved by using ephemeral keys, which are generated
anew for each session and destroyed when the session is ended. If an adversary obtains
one session key, he is not able to decrypt messages from any other session. This security
attribute is called forward secrecy [10]. Since the time consuming process of generation
of elliptic curves in ECC may be run in advance and then the elliptic curve may be used
for generation of many private/public key pairs, the generation of ephemeral keys is no
problem in ECC. The same holds also for DLP systems. The key generation process in
IFP is much more complex which limits the possibility of changing keys in IFP systems
more often.

2 ASYMMETRIC CRYPTOGRAPHIC ALGORITHMS 5

2.2 Efficiency
Efficiency of asymmetric cryptosystems is based on three factors [6]:

1. computational overheads, i.e. how much computation is required to perform cryp-
tographic transformations;

2. size of key parameters, i.e. how many bits are required to store key pairs and their
domain parameters;

3. bandwidth, i.e. how many bits must be communicated to transfer an encrypted
message or a signature.

In this section we compare implementation efficiency of the above mentioned classes
of cryptosystems on the currently accepted level of security — on the level of 80-bit
symmetric keys, i.e. 1024-bit IFP and DLP systems and 160-bit ECC.

2.2.1 Computational overheads

In every system, some computational savings can be made. In RSA, a short public ex-
ponent can be employed (although this has security risks) to speed up encryption and
signature verification. In both DLP systems and ECC, a large part of encryption and sig-
nature generation can be precomputed. This means that the comparison of the systems
strongly depends on their implementation, and consequently there are different results.

Robshaw and Yin present in [13] the following table:

RSA with
1024-bit N,
e=216+1, and
CRT

DLP systems
with 1024-bit
prime

ECDSA or
ECESa over Fp

with 160-bit p

encryption 17 480 120
decryption 384 240 60
signing 384 240 60
verification 17 480 120

aECES = Elliptic Curve Encryption Scheme defined in IEEE P1363 Standard for Public-
Key Cryptography.

Figures in the table are the number of time units required to complete the given oper-
ation under the assumption that one 1024-bit modular multiplication requires one unit of
time.

On the other hand Certicom claims in [6] that the most efficient implementations of
ECC are an order of magnitude (roughly 10 times) faster then either RSA or DSA. They
admit making RSA comparable with ECC in encryption and signature verification (but
not in decryption and signature generation) by using short public exponent.

2.2.2 Size of key parameters

The following table compares sizes of key parameters for the mentioned systems (RSA,
ElGamal/DSA, EC ElGamal/ECDSA).

3 SYMMETRIC CRYPTOGRAPHIC ALGORITHMS 6

Domain Parameters Public key Private key
(in bits) (in bits) (in bits)

RSA —
n (1024)
e (64)

1088
p (512)
q (512)
d (1024)

2048

DLP
p (1024)
q (160)
d (1024)

2208 y (1024) 1024 d (160) 160

ECC

E.a (160)
E.b (160)
p (160)
P (161)
n (160)

801 Q (161) 161 d (160) 160

From the table, it is easy to see that key parameters of ECC are much shorter then in
the other two classes of cryptosystems.

2.2.3 Bandwidth

Public key cryptosystems are commonly used to transport session keys for symmetric key
cryptosystems and to generate signatures. We will consider encrypting symmetric keys
on the same level of security, i.e. 80-bit symmetric keys. The following table compares
size of ciphertexts and signature blobs for the mentioned systems:

RSA DLP ECC
ciphertext 1024 2048 481/321
signature 1024 320 320

We present two sizes of ciphertext in ECC. The first one is the size of full encryption as
described in appendix A.3. This requires input of 2 times 160 bits. In case of encryption
of an 80-bit key, the second part of the input does not contain data, thus we can slip it and
spare 160 bits.

In summary, the ECC is more efficient then other two classes of public-key cryptosys-
tems in terms of size of key parameters and bandwidth. Furthermore, as follows from the
previous section the difference in these parameters (and presumably also in computational
efficiency) between ECC and the other classes quickly grows with the increasing demand
on security.

3 Symmetric cryptographic algorithms
For many symmetric cryptographic algorithms, especially for those for block ciphers, the
key size is fixed by design. Consequently they do not provide such key size flexibility
as asymmetric algorithms. Changing view towards this property has been recently illus-
trated by basic requirements for DES replacement, where AES candidates were required
to provide limited scalability, i.e. to support three different key lengths. Other approaches
were studied as well and some scalable block ciphers offering even more flexibility were
proposed in [5]. We will not go into details here, but it is sufficient to say that currently
there are symmetric algorithms that allows one, if necessary, to increase key size without

4 PGP 7

radical changes in the architecture of the algorithm. Concerning their security, at least
in the case of AES (or in fact all 5 final candidates from which AES was chosen) there
are probably no doubts that it offers enough security for a couple of years while key size
remains within reasonable limits.

4 PGP
PGP is perhaps the most popular cryptographic package that undoubtedly made protec-
tion provided by cryptography available to masses. As time passes, however, the crypto-
graphic algorithms used as its basic building blocks need to be reevaluated in the light of
cryptographic advances made from the time of PGP creation. As shown in sections 2.1.1
and 2.1.2, using PGP in its original form, i.e. with RSA, means that to provide accept-
able level of security one has to use quite large keys today and considerably larger in the
future. As mentioned above, such key sizes might be a problem if speed and available
storage are important and limited.

In our project we have implemented system similar to PGP but taking into account the
current state of cryptography, i.e. new algorithms as well as certain emphasis on the scal-
ability of algorithms with respect to the key size. Particularly, as a possible improvement
of PGP we have implemented its EC version using the Menezes-Vanstone variant of the
EC ElGamal algorithm for public key encryption, EC DSA for signing, and two newer
symmetric cryptographic algorithms — the new encryption standard AES and a new fully
scalable cryptographic algorithm called iterative TST (see [5]).

5 Our project
While we have tried to keep user interface similar to that provided by PGP, "innards" of
our system are of course quite different. The overall description of the structure of our
system is on the following picture:

interface:
ECCkeys, ECCtools, ECCtray

data processing: encryption, signature
key management: key generation, revocation,
export, import, ...

PKC schemes: EC ElGamal, EC DSA
key generation and storage functions

EC arithmetic: point doubling, addition,
subtraction, scalar multiplication

Montgomery modular arithmetic:
Montgomery reduction, addition,
subtraction, multiplication

Standard large number modular
arithmetic: addition, subtraction

In what follows we briefly describe individual modules of our system.

5 OUR PROJECT 8

5.1 Large number modular arithmetic
In order to be able to avoid brute force types of attacks, elliptic curves used in cryptog-
raphy must lie on large finite fields. It means that we need an implementation of large
numbers whose size is much larger then the basic computer word, as well as basic oper-
ations on them (addition, multiplication, etc.) in modular arithmetic. The least efficient
operation in the standard implementation is multiplication: By multiplying two numbers,
size of the result doubles and then division operation has to be applied in order to get an
element of the underlying finite field. Much efficient multiplication is offered by Mont-
gomery representation of field elements. Using this representation, no division operation
is needed and the multiplication and reduction steps can be interleaved, thus the space is
saved too. The addition and subtraction operations work in the standard way. In our im-
plementation we used BIGNUM library of OpenSSL for the standard implementation. We
have implemented the Montgomery arithmetic as presented in [2], and formally proved
correctness of our implementation.

5.2 Elliptic curve arithmetic
An elliptic curve cryptosystem, of course, fundamentally depends on a proper elliptic
curve. Consequently, every implementation of a cryptosystem based on elliptic curves
must cope with the problem of selecting/generating of good elliptic curves.

Having a good elliptic curve, the private key generation process reduces to the genera-
tion of a large random number with no further conditions. Moreover, the elliptic curve is a
part of the domain parameters, i.e. it is publicly known, and may be reused by more users.
It means that the process of generation may be run once and then many private/public key
pairs may be generated.

There are some possibilities, how to get a good elliptic curve:

1. Generate an EC at random. ANSI X9.62 standard [1] introduced an algorithm for
generation of elliptic curves verifiably at random.

2. Let an authority generate an EC. If the authority generates it following the above men-
tioned algorithm, everyone can later verify that it is a good, random curve. Such an
authority may be a specialized department in an organization, a certification authority,
or an independent provider like Kurvenfabrik (see below).

3. Use an EC from a set provided by some standards. NIST FIPS 186-2 [7] and SEC2
[14] standards offer precomputed elliptic curves of different sizes generated verifiably
at random.

Our system provides three hard-coded elliptic curves — a 160 bit curve from [2]2 and
the 192 and 256 bit curves from [7]. Furthermore, we enable users to choose their own
elliptic curves and load their domain parameters during the key pair generation.

In our project we decided not to implement an EC generation algorithm; we recom-
mend to use the Kurvenfabrik (www.kurvenfabrik.de) to everyone who would like
to have their own strong elliptic curve. The Kurvenfabrik project is maintained by the
group of professor Frey, who is intensively working in the elliptic curves area and is
known by his theoretical results. Thus, one may assume that also in future new results in
ECC will be considered in the generation of elliptic curves by this program.

2FIPS 186-2 does not provide any elliptic curve of 160 bits and in time of implementation SEC2 was
not yet available.

5 OUR PROJECT 9

Of course, relying on someone else to provide a good elliptic curve might not be
satisfying solution for somebody. For truly paranoid wishing to generate their own curve
we refer to [1] and [2] for how-to ideas and proofs.

An elliptic curve over a prime finite field Fp is given by an equation:

E : Y 2 = X3 + aX + b,

where both a and b are from the underlying field. Elliptic curve points are solutions (x, y)
in Fp × Fp to the equation E along with a special (zero) point — called point at infinity,
and denoted by O. Points on an elliptic curve create an additive group with addition
operation defined as follows:

Let P and Q be two distinct points on the elliptic curve E. The straight line joining
these points intersects the curve at one other point, say R. The reflection of R in the x-axis
is called P + Q (i.e. R = −(P + Q)).

This definition does not enable addition of a point to itself, thus a special operation
of doubling of a point has to be defined. Calculation of P + P works similarly to the
addition of two different points with the only difference that the the tangent to the curve
at P is constructed. If the tangent is vertical, it intersect the curve at the point at infinity,
i.e. P + P = O.

Standard DLP cryptosystems are based on multiplicative groups with the main opera-
tion of exponentiation. In ECC, the multiplicative group is replaced by the additive group
of elliptic curve points and exponentiation operation by scalar multiplication of a point
(i.e. calculation of gk = g · g · . . . · g for a generator g of a multiplicative group is replaced
by calculation of [k]G = G + G + . . . + G for a generator point G of an additive group
of elliptic curve points). Thus, the computational performance of cryptographic protocols
based on elliptic curves strongly depends on efficiency of the scalar multiplication. We
have implemented efficient algorithms for arithmetic on elliptic curve points ([2], [12]),
and also formally proved their correctness.

5.3 PKC and conventional schemes, key generation
Having implemented basic EC arithmetic we are now prepared to implement a public
key cryptosystem on it. Most of known EC-based public key cryptosystems are based
on EC variant of ElGamal PKC; here we made use of Menezes and Vanstone approach
described in [15] for encryption and ECDSA [7] for signature generation (for details see
the appendix A.3).

As we mentioned in previous subsection, generation of raw key pairs for ECC is a
very simple process: To generate a private key we need to generate a long random number
of the same size as the order of the group generator G (see appendix A.3 and 2.2). The
corresponding public key is then calculated as scalar multiplication of the group generator
by the private key.

For symmetric encryption we used implementation of the AES available at [8] and
implementation of the iterative TST available at [4].

5.4 The cryptlib library
The large number modular arithmetic, elliptic curve arithmetic and cryptographic proto-
cols form the low level of our system. We have combined their implementation with the
cryptlib library [9] which provides all other functionality necessary for building a cryp-
tographic system, like implementation of hash functions (for signature generation), and

5 OUR PROJECT 10

a random data management system (which provides the cryptographically strong random
data used to generate session keys and public/private key pairs — the random data pool is
updated with unpredictable process-specific information as well as system-wide data).

The library is built around a security kernel. This kernel provides the interface be-
tween the outside world and the architecture’s objects (intra-object security) and between
the objects themselves (inter-object security). Each object is contained entirely within
the security perimeter, so that data and control information can only flow in and out in a
controlled manner, and objects are isolated from each other within the perimeter by the
security kernel. [9]

Furthermore, the cryptlib library provides an interface to the encryption and authenti-
cation functions which allows an easy implementation of higher levels of the system, and
storage functions for private keys and X.509 certificates.

5.5 Data processing and key management
Data processing and key management functions are built on the top of the enhanced
cryptlib library and together form the next level of the system.

Key management functions enables one to generate public/private key pairs using
one of the hard-coded elliptic curves or an elliptic curve defined by domain parameters
(see subsection 5.2), revocation of private keys, import and export of public keys. Since
unexperienced users tend to export and send their private key (except of the public key)
to their communication partners [16], we do not allow to export private keys.

There are three basic data processing functions:

1. conventional encryption: data are compressed and encrypted using CBC mode of ei-
ther AES or iterative TST with a key generated from a passphrase provided by a user;

2. PKC encryption: data are compressed and encrypted using CBC mode of either AES
or iterative TST with a random session key, the session key is encrypted using EC
ElGamal with a recipient’s public key, and appended to the encrypted message (in
both cases compression may be omitted, but it is recommended and default);

3. data signature: a signature blob is created from data using EC DSA with RIPEMD-160
hash function, and appended to the original data.

The system allows also combination of encryption and signing, as well as generation of
detached signatures.

5.6 Interface
On the top of the system is the user interface. It consists of three Windows programs
— ECCkeys, ECCtools, ECCtray — whose work and look mimics standard PGP pro-
grams. ECCkeys provides interface to the key management functions. ECCtools allows
to encrypt/decrypt and sign/verify data stored in files (all types of data files are allowed).
ECCtray works like ECCtools but only with text messages stored in the Clipboard or in a
simple window.

5.7 Certification Authority vs. Web of Trust
One of the key problems in practical use of public key cryptography is the problem of how
to ensure/verify authenticity of public keys. Nowadays there are two, principally different,
approaches to cope with this problem, namely Certificate authorities and the Web of Trust
(popularized especially by PGP). Both approaches have their pros and cons but neither

6 CONCLUSIONS 11

provides completely satisfying solution. The worst problem in the both systems is the key
revocation, but this is the well known Achilles’ Heel of the public key cryptography in
general, and it seems that this problem will not be properly solved in the near future.

For these reasons we have decided not to bind ourselves to any of these two key
management systems. In fact, our system is flexible enough to implement any of them.
Public keys are stored as X.509 certificates with local storage of revoked keys. Thus,
for the full CA key management one has yet to implement necessary services (namely
Certification Service, Directory Service, and Certificate Revocation List). Similarly, for
the full Web of Trust, meta-introducing and partial trust have to be implemented.

6 Conclusions
Elliptic curve cryptography, while known in theory for a couple of years, still suffer from
the lack of practical experiences. It is our belief that implementing PGP-like system based
on elliptic curves cryptography and making it available for others could help to overcome
that shortage. In the meantime our implementation of elliptic curve arithmetic turned out
to be appropriate for, and was included into OpenSSL project (see www.openSSL.org)

References
[1] ANSI X9.62, Public key cryptography for the financial services industry: The Ellip-

tic Curve Digital Signature Algorithm (ECDSA). http://www.x9.org/, 1998.

[2] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in Cryptography. Cam-
bridge University Press, July 1999.

[3] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent
to factoring. In Advances in Cryptology - Crypto ’98, pages 59–71, Berlin, 1998.
Springer-Verlag. Lecture Notes in Computer Science Volume 963.

[4] Valer Canda. TST implementation. http://www.exp-math.uni-essen.
de/~valer/work.htm.

[5] Valer Canda and Trung van Tran. Scalable block ciphers based on Feistel-like
structure. Technical report, Institute of Experimental Mathematics, http://www.
exp-math.uni-essen.de/preprints/2001/Iterative.ps, 2000.

[6] Certicom Corp. Current public-key cryptographic systems. http://www.
certicom.com/resources/w_papers/w_papers.html, July 2000.

[7] FIPS 186–2, Digital Signature Standard (DSS). http://csrc.nist.gov/
publications/fips/, 2000.

[8] Brian Gladman. AES implementation. http://fp.gladman.plus.com/
cryptography_technology/rijndael/.

[9] Peter Gutmann. cryptlib. http://www.cs.auckland.ac.nz/~pgut001/
cryptlib/index.html, September 2001.

[10] Don B. Johnson. ECC, future resiliency and high security systems. http://www.
certicom.com/resources/w_papers/w_papers.html, March 1999.

A APPENDIX 12

[11] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. In Public
Key Cryptography, pages 446–465, 2000.

[12] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryp-
tography. The CRC Press series on discrete mathematics and its applications. CRC
Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA, 1997.

[13] M. J. B. Robshaw and Y. L. Yin. Elliptic curve cryptosystems. http://www.
rsa.com/rsalabs/ecc/elliptic_curve.html, June 1997.

[14] SEC 2: Recommended elliptic curve domain parameters. http://www.secg.
org/secg_docs.htm, 2000.

[15] D. R. Stinson. Cryptography Theory and Practice. CRC Press, Boca Raton, 1995.

[16] Alma Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation of
PGP 5.0. In Proceedings of the 8th USENIX Security Symposium, August 1999.

A Appendix

A.1 RSA
RSA is one of the first public key cryptosystem, proposed in 1977 and named after its
inventors R. Rivest, A. Shamir, and L. Adleman. The security of RSA is based on the
integer factorization problem (i.e. on the mathematical difficulty of calculating two large
primes from their composition). However, it has not been proved that breaking of RSA
is equivalent to this problem, and there are some indicia that it is not [3]. It means that
RSA might be in future broken in other way than by factoring the modulus, but it does
not mean that breaking RSA is not intractable.

Name: RSA
Underlying problem: factoring of large integers
Key generation: select two large primes p and q; set the modulus to N = pq;

select integers e and d such that ed ≡ 1 mod (p − 1)(q − 1)
Public key: modulus N and encryption key e
Private key: decryption key d
Prim. sec. parameter: p (min. 1024 bits)
Message: m ∈ F ∗

N

Confidentiality:
Encryption: c = me mod N
Ciphertext: c ∈ F ∗

N

Decryption: m = cd mod N
Authenticity:

Signing: s = md mod N
Signature: s ∈ F ∗

N

Verification: m
?
= se mod N

A.2 ElGamal/DSA
The discrete logarithm problem is defined as follows: Given x and y from a finite field Fp

to find such a number a that xa = y (mod p). The first cryptosystem of this class was

A APPENDIX 13

ElGamal’s encryption and signature scheme invented in 1984. The signature scheme was
later improved into Data Signature Algorithm.

The subgroup discrete logarithm problem (SDLP) is like the traditional DLP, except
that the group generator g generates only a relatively small, but sufficiently large, sub-
group of the multiplicative group F ∗

p . If the DLP can be solved, also the SDLP can be
solved.

Name: ElGamal/DSA
Underlying problem: discrete logarithm problem in a finite field Fp

subgroup discrete logarithm problem in
a subfield Fq (q < p)

Key generation: select a large prime p; select a generator g of Fp;
choose a number d and calculate y = gd mod p

Domain parameters: modulus p and group generator g
Public key: group element y
Private key: integer d
Prim. sec. parameters: p (min. 1024 bits)

q (min. 160 bits)
Message: m ∈ F ∗

p

Confidentiality (ElGamal):
Encryption: c1 = gk mod p (for a random field element k)

c2 = m ∗ yk mod p
c = (c1, c2)

Ciphertext: c ∈ F ∗

p × F ∗

p

Decryption: m = (cd
1
)−1 ∗ c2 mod p

Authenticity (DSA):
Signing: s1 = gk mod p mod q (for a random field element k)

s2 = (d ∗ s1 + m) ∗ k−1 mod q
s = (s1, s2)

Signature: s ∈ Fq × Fq

Verification: e1 = m ∗ s−1

2
mod q

e2 = s1 ∗ s−1

2
mod q

ge1 ∗ ye2 mod p mod q
?
= s1

A.3 EC ElGamal/EC DSA
Elliptic curve cryptography (ECC) was first proposed in 1985 independently by Neal
Koblitz and Victor Miller, and is based on the elliptic curve discrete logarithm problem
(ECDLP). The ECDLP is an alternative of the standard discrete logarithm problem (DLP)
applied on a group of elliptic curve points. It says: Given two points P and Q on an
elliptic curve E, determine the integer k (0 ≤ k < n), such that Q = [k]P , provided that
such an integer exists.

Name: EC ElGamal/ECDSA
Underlying problem: elliptic curve discrete logarithm problem
Key generation: select an elliptic curve E over a finite field Fp;

select a point P with a sufficiently large order n;
choose a random integer d and calculate Q = [d]P

Domain parameters: elliptic curve E, modulus p, point P , order n
Public key: point Q
Private key: integer d

A APPENDIX 14

Prim. sec. parameter: n (min. 160 bits)
Message: m ∈ F ∗

p × F ∗

p

Confidentiality (EC ElGamal):
Encryption: choose a random element k of Fn

kG = [k]G
(q1, q2) = [k]Q
c1 = q1m1 mod p
c2 = q2m2 mod p
c = (kG, c1, c2)

Ciphertext: c ∈ E × F ∗

p × F ∗

p

Decryption: (q1, q2) = [d]kG
m1 = c1q

−1

1
mod p

m2 = c2q
−1

2
mod p

m = (m1,m2)
Authenticity (ECDSA):

Signing: choose a random element k of Fn

(x, y) = [k]G
s1 = x mod p
s2 = (d ∗ s1 + m) ∗ k−1 mod n
s = (s1, s2)

Signature: s ∈ F ∗

n × Fn

Verification: e1 = m ∗ s−1

2
mod n

e2 = s1 ∗ s−1

2
mod n

(x, y) = e1G + e2Q

x mod n
?
= s1

